SUPRAMOLECULAR ENGINEERING OF VESICLES VIA SELF-ASSEMBLY: APPLICATION TO DRUG DELIVERY Floraine Collette To cite this version: Floraine Collette. SUPRAMOLECULAR ENGINEERING OF VESICLES VIA SELF-ASSEMBLY: APPLICATION TO DRUG DELIVERY. Material chemistry. University of New Hampshire, Durham, 2005. English. tel-00359278 HAL Id: tel-00359278 https://tel.archives-ouvertes.fr/tel-00359278 Submitted on 6 Feb 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESIS UNIVERSITY OF NEW HAMPSHIRE SUPRAMOLECULAR ENGINEERING OF VESICLES VIA SELF-ASSEMBLY: APPLICATION TO DRUG DELIVERY BY FLORAINE M. COLLETTE MASTER OF SCIENCE 2005 SUPRAMOLECULAR ENGINEERING OF VESICLES VIA SELF-ASSEMBLY: APPLICATION TO DRUG DELIVERY BY FLORAINE M. COLLETTE B.S., UNIVERSITY OF PARIS VI (FRANCE), 2003 Submitted to the University of New Hampshire In Partial Fulfillment of The Requirement for the Degree of Master of Science In Chemistry December, 2005 This thesis has been examined and approved. Thesis Director, Jerome P. Claverie Associate Research Professor Glen P. Miller Associate Professor in Chemistry Richard P. Johnson Professor in Chemistry Date 14/09/05 ii DEDICATION This thesis is dedicated to my family. Without their love and support this work would not have been possible iii ACKNOWLEDGEMENTS First and foremost I would like to thank Jerome Claverie for letting me stay in his research group after my internship. The knowledge he has shared with me will surely help me in the future. I wanted also like to thank him for always pushing me to go further and for always showing a happy face when we obtained some encouraging results; for me that one of the main motivating factors. I also wanted to thank all the members of the NPRC for always being supportive and in particular Julien, Zac and Anne who have become great friends. I owe a huge thanks to Yvon and Don for always being so kind with me. I owe a special thanks to all the faculty members and the students of the chemistry department, especially to Gary Weisman who shared his love for teaching and has always been extremely supportive. Thanks to all of you for your kindness and support. I express my gratitude to Dr Johnson and Dr Miller for spending time reading this thesis and guiding me along my Master’s degree. I also thank Bentley Pharmaceutical Inc. for funding this project. I really appreciate the work we did with them, in particular with Robert Gyurik. Thanks to all of you. iv TABLE OF CONTENTS DEDICATION .......................................................................................................iii ACKNOWLEDGEMENTS .................................................................................... iv TABLE OF CONTENTS........................................................................................ v LIST OF FIGURES .............................................................................................. ix LIST OF TABLES ...............................................................................................xiii ABSTRACT ........................................................................................................xiv I. INTRODUCTION .......................................................................................1 1. Diabetes ...........................................................................................................1 2. Insulin Delivery Methods...................................................................................7 A. Non -oral delivery methods. ..............................................................................7 B. Oral delivery of therapeutic proteins: Challenges.............................................8 C. Oral delivery of therapeutic proteins and existing strategies for the oral delivery of insulin: Absorption enhancers. ..........................................................10 D. Oral delivery of therapeutic proteins and existing strategies for the oral delivery of insulin: Coupling with a transport promoter. ......................................11 E. Oral delivery of therapeutic proteins and existing strategies for the oral delivery of insulin: Proteases inhibitors...............................................................11 F. Oral delivery of therapeutic proteins and existing strategies for the oral delivery of insulin: Mucoadhesive polymers.....................................................................12 G. Oral delivery of therapeutic proteins and existing strategies for the oral delivery of insulin: Prodrugs................................................................................13 H. Oral delivery of therapeutic proteins and existing strategies for the oral delivery of insulin: Microparticles and nanoparticles...........................................14 v I. Oral delivery of therapeutic proteins and existing strategies for the oral delivery of insulin: Liposomes and Niosomes. ................................................................. 15 J. Oral delivery of therapeutic proteins and existing strategies for the oral delivery of insulin: Delivery in the colon. .......................................................................... 16 K. A new approach. ............................................................................................ 16 3. Design of the vesicles..................................................................................... 19 II. BACKGROUND ....................................................................................... 22 1. Self-assembly with amphiphilic compounds ................................................... 22 2. Selection of the components of the triblock copolymer................................... 34 3. Synthetic Scheme........................................................................................... 37 4. Synthesis of PEG-PLA diblock copolymer ...................................................... 38 5. Synthesis of polyglutamic acid........................................................................ 43 III. RESULTS AND DISCUSSION................................................................. 52 1. Synthesis of the diblock copolymer PEG-PLA ................................................ 52 2. Synthesis of the homopolymer poly(glutamic acid)......................................... 67 3. Formation of the triblock copolymer PEG-PLA-PGlu ...................................... 79 4. Formation of vesicles...................................................................................... 85 A. Self -assembly of vesicles and characterization.............................................. 85 B. Structure of the vesicles. ................................................................................ 96 C. Insulin Encapsulation. .................................................................................... 99 5. Pharmacokinetics and pharmacodynamics .................................................. 102 IV. CONCLUSION ....................................................................................... 108 V. EXPERIMENTAL SECTION .................................................................. 112 1. General Methods .......................................................................................... 112 2. Solvents........................................................................................................ 113 vi 3. Reagents ...................................................................................................... 114 4. Synthesis ...................................................................................................... 116 A. Typical preparation of a diblock copolymer. ................................................. 116 B. Typical N-Carboxy Anhydride preparation.................................................... 118 C. Typical polymerization of the NCA. .............................................................. 119 D. Typical deprotection of a poly(benzyl glutamate). ........................................ 120 E. Five other methods of deprotection of the Poly(benzyl glutamate)............... 121 F. Typical preparation of the branched triblock copolymer. .............................. 123 G. Typical preparation of the linear triblock copolymer, typical polymerization of the NCA and functionalisation of the PBnGlu. .................................................. 125 H. Typical coupling reaction.............................................................................. 126 I. Typical deprotection of the linear triblock copolymers. .................................. 127 J. Typical CAC measurement experiment. ....................................................... 128 K. Typical insulin encapsulation experiment. .................................................... 129 L. Animal experiments ...................................................................................... 130 LIST OF REFERENCES................................................................................... 134 APPENDICES .................................................................................................
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages175 Page
-
File Size-