Introduction to Aerodynamics < 1.7. Dimensional Analysis > Physical

Introduction to Aerodynamics < 1.7. Dimensional Analysis > Physical

Introduction to Aerodynamics < 1.7. Dimensional analysis > Physical parameters Q: What physical quantities influence forces and moments? V A l Aerodynamics 2015 fall - 1 - Introduction to Aerodynamics < 1.7. Dimensional analysis > Physical parameters Physical quantities to be considered Parameter Symbol units Lift L' MLT-2 Angle of attack α - -1 Freestream velocity V∞ LT -3 Freestream density ρ∞ ML -1 -1 Freestream viscosity μ∞ ML T -1 Freestream speed of sound a∞ LT Size of body (e.g. chord) c L Generally, resultant aerodynamic force: R = f(ρ∞, V∞, c, μ∞, a∞) (1) Aerodynamics 2015 fall - 2 - Introduction to Aerodynamics < 1.7. Dimensional analysis > The Buckingham PI Theorem The relation with N physical variables f1 ( p1 , p2 , p3 , … , pN ) = 0 can be expressed as f 2( P1 , P2 , ... , PN-K ) = 0 where K is the No. of fundamental dimensions Then P1 =f3 ( p1 , p2 , … , pK , pK+1 ) P2 =f4 ( p1 , p2 , … , pK , pK+2 ) …. PN-K =f ( p1 , p2 , … , pK , pN ) Aerodynamics 2015 fall - 3 - < 1.7. Dimensional analysis > The Buckingham PI Theorem Example) Aerodynamics 2015 fall - 4 - < 1.7. Dimensional analysis > The Buckingham PI Theorem Example) Aerodynamics 2015 fall - 5 - < 1.7. Dimensional analysis > The Buckingham PI Theorem Aerodynamics 2015 fall - 6 - < 1.7. Dimensional analysis > The Buckingham PI Theorem Through similar procedure Aerodynamics 2015 fall - 7 - Introduction to Aerodynamics < 1.7. Dimensional analysis > Dimensionless form Aerodynamics 2015 fall - 8 - Introduction to Aerodynamics < 1.8. Flow similarity > Dynamic similarity Two different flows are dynamically similar if • Streamline patterns are similar • Velocity, pressure, temperature distributions are same • Force coefficients are same Criteria • Geometrically similar • Similarity parameters (Re, M) are same Aerodynamics 2015 fall - 9 - Introduction to Aerodynamics < 1.8. Flow similarity > Dynamic similarity Airfoil flow example • Consider two airfoils which have the same shape and angle of attack, but have different sizes and are operating in two different fluids. Aerodynamics 2015 fall - 10 - Introduction to Aerodynamics < 1.8. Flow similarity > Dynamic similarity Airfoil 1 (sea level) Airfoil 2 (cryogenic tunnel) α1=5° α2=5° V1=210 m/s V2=140 m/s 3 3 ρ1=1.2 kg/m ρ2=3.0 kg/m μ1=1.8e-5 kg/m·s μ2=1.5e-5 kg/m·s a1=300 m/s a2=200 m/s c1=1.0 m c2=0.5 m Aerodynamics 2015 fall - 11 - Introduction to Aerodynamics < 1.8. Flow similarity > Dynamic similarity The PI products evaluate to the following values. Airfoil 1 (sea level) Airfoil 2 (cryogenic tunnel) α1=5° α2=5° RE1=1.4e7 RE2=1.4e7 M1=0.7 M2=0.7 Two airfoil flows are dynamically similar. g1,Re1, M1 g2 ,Re2 , M 2 c c l1 l2 Aerodynamics 2015 fall - 12 - Introduction to Aerodynamics < 1.9. Fluid statics : Buoyancy force > Fluid statics The force on an element of fluid itself • Pressure forces from the dp p dydx dz surrounding fluid exerted on the dy surface on the element dz dy • Gravity force due to the weight of dx the fluid inside the element p dx dz gdx dy dz Aerodynamics 2015 fall - 13 - Introduction to Aerodynamics < 1.9. Fluid statics : Buoyancy force > Fluid statics Net pressure force & Gravity force Net pressure force dp p dydx dz dp dy pdx dz p dydx dz dy dz dp dy dx dy dz dx dy Gravity force dx dy dzg p dx dz gdx dy dz Aerodynamics 2015 fall - 14 - Introduction to Aerodynamics < 1.9. Fluid statics : Buoyancy force > Fluid statics The fluid element is in equilibrium, dp p dydx dz dp dx dy dz gdx dy dz 0 dy dy dp g dy dz dy → Hydrostatic equation dx p dx dz gdx dy dz Aerodynamics 2015 fall - 15 - Introduction to Aerodynamics < 1.9. Fluid statics : Buoyancy force > Fluid statics Let the fluid be a liquid, for which we can assume ρ is constant. dp p dydx dz dy p h 2 2 p ,h dp g dy 1 1 p h 1 1 dz p2 p1 gh2 h1 dy dx h h h p1 gh1 p2 gh2 1 2 p gh const. p dx dz p2 ,h2 gdx dy dz Aerodynamics 2015 fall - 16 - Introduction to Aerodynamics < 1.9. Fluid statics : Buoyancy force > Fluid statics Applications : Walls of container p gh p1 gh1 pa gh1 p pa gh1 h pa p1 pa ,h1 p pa gh1 h p,h p2 ,h2 0 pa gh1 Aerodynamics 2015 fall - 17 - Introduction to Aerodynamics < 1.9. Fluid statics : Buoyancy force > Fluid statics Applications : U-tube manometer Aerodynamics 2015 fall - 18 - Introduction to Aerodynamics < 1.9. Fluid statics : Buoyancy force > Buoyancy force Archimedes principle Buoyancy force Weight of fluid on body = displaced by body Aerodynamics 2015 fall - 19 -.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    19 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us