Instanton Effects in Orbifold ABJM Theory

Instanton Effects in Orbifold ABJM Theory

Instanton Effects in Orbifold ABJM Theory Sanefumi Moriyama (NagoyaU/KMI) [Honda+M 1404] [M+Nosaka 1407] Contents 1. IntroducOon 2. ABJM 3. Generalizaons Message The Exact Instanton Expansion of The ABJM ParOOon FuncOon Has Been Found! CauOon: Not Solved Completely Logically (ParOal Assist From Numerical Method) Why ABJM InteresOng? ABJM Theory Describes MulOple M2-branes on 4 1 3 C /Zk → R>0 x S x CP (k→∞) • log (ParOOon FuncOon) = M2 DOF = N3/2 + ... [DrukKer-Marino-Putrov] • Understanding Membrane InteracOons • A prototype of AdS/CFT Why ABJM Exact PF InteresOng? • A compleon of N3/2 DOF (Understanding Membrane InteracOon) • Perturbave Correcons Sum Up To Airy Z(N) ~ Ai[N] ~ exp(N3/2) [Fuji-Hirano-M] • Poles from Coefficients of Two Instantons Cancel Between Themselves [Hatsuda-M-OKuyama] • Completely by Refined Topological Strings [Hatsuda-Marino-M-OKuyama] Queson So Far So Good for ABJM • How General, ProperOes of ABJM? - More Instantons, More Cancellaons? - Exact Expansion for General Theories? Contents 1. IntroducOon 2. ABJM 3. Generalizaons ABJM Matrix Model • ParOOon FuncOon of ABJM Theory • Due to SUSY, Localized to Matrix Model N1=N2=N Z(N) = gs=2πi/k [Pestun, KapusOn-Willem-Yaakov] 't Hooq Expansion • N→∞ Expansion with λ=N/k Fixed • Genus Expansion [DrukKer-Marino-Putrov] 2 0 -2 -4 log[Z(N)] = N F0(λ) + N F1(λ) + N F2(λ) + N F3(λ) + ... 2 pert -2π√2λ -4π√2λ = N [F0 (λ) + # e + # e + ...] 0 pert -2π√2λ -4π√2λ + N [F1 (λ) + # e + # e + ...] + ... ... Sum Up To Airy Funcon! Worldsheet Instanton -2π√2λ 1 [Fuji-Hirano-M, Honda et al] e = exp[- TF1 Area(CP )] F-String Wrapping CP1⊂CP3 [Cagnazzo-Sorokin-Wulff, DMP] M-theory Expansion [Herzog-Klebanov-Pufu-Tesileanu] 4 • M-theory BacKground: C /Zk • N→∞ with k Fixed • Close To 't Hooq Limit But Not Exactly N M-theory Regime k: Fixed 't Hooq Regime k λ=N/k Fixed but Large Fermi Gas Formalism [Marino-Putrov] • RewriOng ParOOon FuncOon • Regarding as Fermi Gas with Hamiltonian e-H -1 σ -H Z(N) = (N!) ∑σ∈S(N) (-1) ∫ ∏i dqi 〈qi| e |qσ(i)〉 e-H ~ (2 cosh q/2)-1 (2 cosh p/2)-1 [q,p] = i 2πk • Introducing Grand PotenOal J(μ) ∞ μN μ -H e = ∑N=0 Z(N) e = det (1 + e e ) WKB (small k) expansion -1 1 3 5 J(μ) = k J0(μ) + k J1(μ) + k J2(μ) + k J3(μ) + ... -1 pert 2 -2μ -4μ = k [ J0 (μ) + (#μ +#μ+#)e + (...) e + ... ] pert 2 -2μ -4μ + k [ J1 (μ) + (#μ +#μ+#)e + (...) e + ... ] + ... ... = (#μ3+#μ+#) + (#μ2+#μ+#)e-2μ + (...)e-4μ + ... Airy FuncOon Reproduced [Marino-Putrov Membrane Instanton ] -2μ -π√2Nk 3 e ≈ e = exp[- TD2 Area(RP )] D2-brane Wrapping RP3⊂CP3 [DrukKer-Marino-Putrov] Short Summary [Fuji-Hirano-M] 't Hooq Perturbave WKB Expansion Sum Expansion [DrukKer-Marino-Putrov] [Marino-Putrov] Worldsheet Membrane Instanton Instanton Furthermore [Fuji-Hirano-M] 't Hooq Perturbave WKB Expansion Sum Expansion [DrukKer-Marino-Putrov] [Marino-Putrov] Worldsheet Membrane Instanton Instanton • Numerical Analysis • Cancellaon Mechanism [Hatsuda-M-OKuyama] Bound States [Hatsuda-M-OKuyama 1301] MB WS Bound States e-2lμ-4mμ/k Taken Care Of By WS instantons with Chemical PotenOal Redef μ → μeff -2μ -4μ μeff = μ + # e + # e + ... Cancelaon Mechanism [Hatsuda-M-OKuyama 1211] 2 -4μ 2 -8μ 2 -12μ Jk=1(μ) = [#μ +#μ+#]e + [#μ +#μ+#]e + [#μ +#μ+#]e + ... 2 -2μ 2 -4μ 2 -6μ Jk=2(μ) = [#μ +#μ+#]e + [#μ +#μ+#]e + [#μ +#μ+#]e + ... -4μ/3 -8μ/3 2 -4μ Jk=3(μ) = [#]e + [#]e + [#μ +#μ+#]e + ... -μ 2 -2μ -3μ Jk=4(μ) = [#]e + [#μ +#μ+#]e + [#]e + ... ... -2μ/3 -4μ/3 2 -2μ Jk=6(μ) = [#]e + [#]e + [#μ +#μ+#]e + ... WS(1) WS(2) WS(3) ↑ ↑ ↑ Free Energy of Topological String Cancelaon Mechanism [Hatsuda-M-OKuyama 1211] (Raison d'Etre for M-theory!?) 2 -4μ 2 -8μ 2 -12μ Jk=1(μ) = [#μ +#μ+#]e + [#μ +#μ+#]e + [#μ +#μ+#]e + ... 2 -2μ 2 -4μ 2 -6μ Jk=2(μ) = [#μ +#μ+#]e + [#μ +#μ+#]e + [#μ +#μ+#]e + ... -4μ/3 -8μ/3 2 -4μ Jk=3(μ) = [#]e + [#]e + [#μ +#μ+#]e + ... -μ 2 -2μ -3μ MB(2) Jk=4(μ) = [#]e + [#μ +#μ+#]e + [#]e + ... ... -2μ/3 -4μ/3 2 -2μ Jk=6(μ) = [#]e + [#]e + [#μ +#μ+#]e + ... WS(1) WS(2) WS(3) MB(1) ↑ ↑ ↑ Free Energy of Topological String All Explicitly In Topological Strings [..., Hatsuda-M-Marino-OKuyama] J(μ)=Jpert(μeff)+JWS(μeff)+JMB(μeff) pert 3 J (μ)=Cμ /3+Bμ+A WS eff eff eff J (μ )=Ftop(T1 ,T2 ,λ) MB eff -1 eff eff J (μ )=(2πi) ∂λ[λFNS(T1 /λ,T2 /λ,1/λ)] eff eff Ftop(T1,T2,τ) = ... T1 =4μ /k-iπ eff eff FNS(T1,T2,τ) = ... T2 =4μ /k+iπ λ=2/k C=2/π2k, B=..., A=... k/2 -2μ k/2 -2μ eff μ-(-1) 2e 4F3(1,1,3/2,3/2;2,2,2;(-1) 16e ) k=even μ = -4μ -4μ μ+e 4F3(1,1,3/2,3/2;2,2,2;-16e ) k=odd All Explicitly In Topological Strings [..., Hatsuda-M-Marino-OKuyama] J(μ)=Jpert(μeff)+JWS(μeff)+JMB(μeff) pert 3 J (μ)=Cμ /3+Bμ+A WS eff eff eff J (μ )=Ftop(T1 ,T2 ,λ) MB eff -1 eff eff J (μ )=(2πi) ∂λ[λFNS(T1 /λ,T2 /λ,1/λ)] F(T1,T2,τ1,τ2): Free Energy of Refined Top Strings T1,T2: Kahler Moduli τ1,τ2: Coupling Constants Topological Limit F (T ,T ,τ) = lim F(T ,T ,τ ,τ ) top 1 2 τ1→τ,τ2→-τ 1 2 1 2 NS Limit F (T ,T ,τ) = lim 2πiτ F(T ,T ,τ ,τ ) NS 1 2 τ1→τ,τ2→0 2 1 2 1 2 All Explicitly In Topological Strings [..., Hatsuda-M-Marino-OKuyama] J(μ)=Jpert(μeff)+JWS(μeff)+JMB(μeff) Jpert(μ)=Cμ3/3+Bμ+A WS eff eff eff J (μ )=Ftop(T1 ,T2 ,λ) MB eff -1 eff eff J (μ )=(2πi) ∂λ[λFNS(T1 /λ,T2 /λ,1/λ)] F(T ,T ,τ ,τ ) = ∑ ∑ ∑ N d1,d2 1 2 1 2 jL,jR n d1,d2 jL,jR χ (q ) χ (q ) e-n(d1T1+d2T2) jL L jR R n/2 -n/2 n/2 -n/2 /[n(q1 -q1 )(q2 -q2 )] 2πiτ1 2πiτ2 πi(τ1-τ2) πi(τ1+τ2) q1 =e q2 =e qL=e qR=e N d1,d2 : BPS Index of local P1 x P1 jL,jR (Gopakumar-Vafa or Gromov-Wimen invariants) LooKing BacK, What Makes ABJM Solvable? • Max SUSY (N=6) !? • Relaons to Topological Strings? In Fact, ABJ (N=6 & Topological Strings) Solved Similarly. [Awata-Hirano-Shigemori, Honda, Matsumoto-M, Honda- OKuyama, Kallen] Generalizaons • ABJM only Two Types of Instantons → More Non-Trivial Cancellaons To Understand Membrane Moduli Space • What If Relaon To Topological Strings Is Unclear? Contents 1. IntroducOon 2. ABJM 3. Generalizaons Generalizaons • ABJM in Quiver Diagram k -k • More General N=3 Circular Quivers (Σi ki = 0) k 2 k3 k1 k k5 4 (Expected to be M2 on General BacKground) Generalizaons Especially, [Gaiomo-Wimen, Hosomichi-Lee3-ParK] r [U(N)k x U(N)-k] -k k -k k k -k -k k -k k k Enhanced to N=4 -k Interpretaon: 4 Orbifold C / (Zkr x Zr) [Benna- Klebanov-Klose-SmedbacK, Imamura-Kimura, Terashima-Yagi] In Fact, More Generally As Long As MulOple RepeOOon k k4 5 k1 k3 k2 k2 k k3 2 k3 k1 k1 k4 k5 k4 k5 k5 k4 k k1 3 k2 Results [Honda-M] • Grand PotenOal for MulOple RepeOOon Jr(μ) = ... in terms of J1(μ) • Especially, Perturbave Coefficients 2 2 -2 Cr = C1 / r Br = B1 - π C1(1-r )/3 Ar = r A1 Results [Honda-M] • Orbifold ABJM ParOOon FuncOon Solved - A New Instanton Effect Originates From Pert exp(-2π2Cμ/k) = exp(-2μ/r) - Interpretaon: 3 D2 wrapping A New Lagragian Submfd RP /Zr More N=4 Superconformal Theories N=4 Enhancement, Not Restricted To {ka} = {k, -k, k, -k, ..., k, -k} But [Imamura-Kimura] ka = (k/2) (sa-sa-1) sa = ±1 Many ProperOes Similar to ABJM Airy FuncOons, Cancellaon Mechanism, ... [M-Nosaka, see Nosaka's poster] Summary • ABJM ParOOon FuncOon Solved • Generalizaons to General N=3 Superconformal Circular Quiver Theories? • Start with N=4 - Orbifold Case: Solved AND Beyond - General Cases: Just StarOng • Hope: Solve All Superconformal Theories & Understand Membrane Moduli Space ThanK you for your aenOon. .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    31 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us