Continuum Mechanics VI. Typical Problems of Elasto-Statics 1. Elasto

Continuum Mechanics VI. Typical Problems of Elasto-Statics 1. Elasto

Continuum mechanics VI. Typical problems of elasto-statics AleˇsJanka office Math 0.107 [email protected] http://perso.unifr.ch/ales.janka/mechanics Apr 13, 2011, Universit´ede Fribourg AleˇsJanka VI. Problems of elasto-statics 1. Elasto-statics in small deformations, linear material Let us formulate the simplest problem of elasticity in 3D: given a computational domain Ω IR3, find a displacement field ⊂ u :Ω IR3 such that: → Force equilibria: symmetric Euler stress-tensor τ, τ ij = F i ie. div τ = F in Ω −∇j − ij ijk` Constitutive law: Hooke’s law, τ = E ek`, e.g. 2µ τ = 2µe + λ tr(e) Id where λ = K − 3 Kinematic equation: Cauchy strain tensor e: 1 1 e = [ u + u ] ie. e = u + ( u)T in Ω k` 2 ∇k ` ∇` k 2 ∇ ∇ Boundary conditions h i u = u¯ on Γ ∂Ω (Dirichlet-type), D ⊂ τ n = g on Γ = ∂Ω Γ (Neumann-type). · N \ D AleˇsJanka VI. Problems of elasto-statics 1.1. Weak formulation of elasto-statics: howto a) Non-homogenous Dirichlet condition homogeneous: → Instead of finding u [H1(Ω)]3 with u = u¯ on Γ , let us offset u ∈ D by the known u¯ (extended somehow onto the whole Ω). u = u¯ + δu in Ω, with δu = 0 on ΓD Define the appropriate functional subspace of [H1(Ω)]3 by V = w [H1(Ω)]3 : w = 0 on Γ . 0 { ∈ D } Instead of finding u, find δu V , u = u¯ + δu and ∈ 0 b) Multiply force equilibria by any test function v V to get ∈ 0 force equilibria in weak form div τ v dx = F v dx v V . − · · ∀ ∈ 0 ZΩ ZΩ ie. (component-wise) τ ij v dx = F i v dx v V . −∇j i i ∀ ∈ 0 ZΩ ZΩ AleˇsJanka VI. Problems of elasto-statics 1.1. Weak formulation of elasto-statics: howto c) Apply Green’s Theorem (integration by parts) τ ij v dx τ ij n v dΓ = F i v dx v V · ∇j i − j i i ∀ ∈ 0 ZΩ Z∂Ω ZΩ d) Split to and and apply boundary conditions: ∂Ω ΓD ΓN R R Rv = 0 on ΓD , ij i τ nj = g on ΓN . ij i i to get τ j vi dx = F vi dx + g vi dΓ. Ω · ∇ Ω ΓN Z ij Z1 ij ji Z e) Use symmetry of τ = 2 τ + τ to get ij 1 ij 1 ji τ (u) j vi dx = τ (u) j vi dx + τ (u) j vi dx Ω · ∇ 2 Ω · ∇ 2 Ω · ∇ Z Z Z τ ij (u) v ·∇i j 1 = τ ij (u) ( v + v ) dx| {z } · 2 ∇j i ∇i j ZΩ eij (v) AleˇsJanka |VI. Problems{z of elasto-statics} 1.1. Weak formulation of elasto-statics: howto f) Use constitutive law to express τ: find δu V , so that u = u¯ + δu and ∈ 0 E ijk` e (u) e (v) dx = F i v dx + g i v dΓ, v V k` ij i i ∀ ∈ 0 ZΩ ZΩ ZΓN g) Use linearity of e(u) to separate u¯ from the unknown δu: find δu V so that ∈ 0 E ijk`e (δu) e (v) dx = F i v dx+ g i v dΓ E ijk` e (u¯) e (v) dx v V k` ij i i − k` ij ∀ ∈ 0 ΩZ ΩZ ΓZN ΩZ AleˇsJanka VI. Problems of elasto-statics 2. Nonlinear elasto-statics: classification Origins of nonlinearity of elasticity problems: Geometrical nonlinearity: also called kinematic nonlinearity for large displacements and/or large deformations Material nonlineraity: also called physical nonlinearity due to constitutive laws (nonlinear materials). Classification: Material nonlinearity + geometrical linearity: use “small deformations” theory, iterate on material nonlinearity Large displacements + small deformations: big shifts and rotations as a rigid body, but small deformations. Use nonlinear kinematics (Green or Almansi strain). Linear constitutive law (e.g. Hooke’s law) can be used. Large displacements + large deformations: need nonlinear kinematics (Green or Almansi strain) and nonlinear constitutive law (non-linear material). AleˇsJanka VI. Problems of elasto-statics 2. Nonlinear elasto-statics (Lagrange formulation) Force equilibria: T j` uk + δk = F k in Ω −∇` ∇j j 0 0 h i Kinematic equation: Green strain 1 ε (u) = u + u + uk u ij 2 ∇j i ∇i j ∇i · ∇j k Nonlinear constitutive law: nonlinear material ∂W T ij = = T ij (ε) ∂εij Boundary conditions u = u¯ on Γ ∂Ω (Dirichlet-type), D ⊂ 0 Id + u T n = σ n = g on Γ = ∂Ω Γ (Neumann-type). ∇ · 0 · 0 N 0 \ D AleˇsJanka VI. Problems of elasto-statics 2.1 Weak formulation of elasto-statics (Lagrange formul.) Same steps as in Section 1.1.: a)-b) find δu V s.t. u = u¯ + δu and ∈ 0 j` k k k ` T j u + δj vk dx = F0 vk dx , v V0. Ω −∇ ∇ Ω ∀ ∈ Z 0 h i Z 0 c) Apply Green’s Theorem (integration by parts): T j` uk +δk v dx T j` uk +δk n0 v dΓ = F k v dx ∇j j ∇` k − ∇j j ` k 0 k ΩZ0 ∂ZΩ0 ΩZ0 d) Split to and , apply boundary conditions v V0 ∂Ω0 ΓD ΓN ∈ on Γ and σ n = g on Γ to get D R · 0 R NR T j` uk +δk v dx = F k v dx+ g k v dΓ v V ∇j j ∇` k 0 k k ∀ ∈ 0 ΩZ0 ΩZ0 ΓZN AleˇsJanka VI. Problems of elasto-statics 2.1 Weak formulation of elasto-statics (Lagrange formul.) j` 1 j` `j e) Use symmetry of T = 2 T + T T j` uk +δk v dx = T j` uk v dx + T k` v dx ∇j j ∇` k ∇j ∇` k ∇` k ΩZ0 ΩZ0 ΩZ0 uk v + v uk v + v = T j` ∇j ∇` k ∇j k ∇` dx + T k` ∇` k ∇k ` dx 2 2 ΩZ0 ΩZ0 v + v + uk v + uk v = T ij ∇i j ∇j i ∇i ∇j k ∇j ∇i k dx 2 ΩZ0 Dεij (u,v) Here, we have introduced | {z } 1 Dε (u, v) = v + v + uk v + uk v ij 2 ∇i j ∇j i ∇i ∇j k ∇j ∇i k How does it relate to εij (u)? AleˇsJanka VI. Problems of elasto-statics 2.1 Weak formulation of elasto-statics (Lagrange formul.) f) Use constitutive law to express T ij : T ij = ∂Ψ(u) ∂εij find δu V so that u = u¯ + δu and ∈ 0 ∂Ψ(u) Dε (u, v) dx = F k v dx + g k v dΓ ∂ε ij 0 k k ZΩ0 ij ZΩ0 ZΓN f’) Dεij (u, v) to εij (u): directional (Gˆateaux)derivative: What is the variation of εij (u+α v), seen as a function of α IR? Get the slope at u, ie. at α = 0: ∈ d [εij (u+α v)]α 0 = dα → d 1 = (u +αv ) + (u +αv ) + (u +αv ) (uk +αv k ) dα2∇i j j ∇j i i ∇i k k · ∇j u uk +α( uk v + uk v )+α2 v k v ∇i k ·∇j ∇j ·∇i k ∇i ·∇j k ∇j ·∇i k α 0 1 → = v + v + uk v + uk | v = D{zε (u, v) } 2 ∇i j ∇j i ∇i · ∇j k ∇j · ∇i k ij AleˇsJanka VI. Problems of elasto-statics 2.1 Weak formulation of elasto-statics (Lagrange formul.) f”) Directional derivative DΨ(u, v) of Ψ(u) at u along the direction v: use chain rule to differentiate Ψ(ε(u)): d ∂Ψ(u) [Ψ(u+αv)]α 0 = Dεij (u, v) dα → ∂εij T ij f?) Introduce the total potential energy:| {z } Π(u) = Ψ(u) dx F k u dx + g k u dΓ − 0 k k ZΩ0 ZΩ0 ZΓN strain energy work by external forces | {z } | {z } AleˇsJanka VI. Problems of elasto-statics 2.1 Weak formulation of elasto-statics (Lagrange formul.) Weak formulation and its equivalent minimization problem: The weak formulation: find u u¯ + V such that ∈ 0 ∂Ψ(u) Dε (u, v) dx = F k v dx + g k v dΓ v V ∂ε ij 0 k k ∀ ∈ 0 ZΩ0 ij ZΩ0 ZΓN simplifies to finding u u¯ + V such that ∈ 0 DΠ(u, v) = 0 v V ∀ ∈ 0 This is in fact the optimality condition for an equivalent minimization problem: find u u¯ + V such that ∈ 0 Π(u) min . → AleˇsJanka VI. Problems of elasto-statics 2.1 Weak formulation of elasto-statics (Lagrange formul.) g) Linearize around the known state u,¯ express the problem in the unknown δu V : find u u¯ + V such that ∈ 0 ∈ 0 ∂Ψ(u) Dε (u, v) dx = F k v dx + g k v dΓ v V ∂ε ij 0 k k ∀ ∈ 0 ZΩ0 ij ZΩ0 ZΓN with limited Taylor expansion around u¯: ∂Ψ(u) ∂Ψ(u¯) ∂2Ψ(u¯) = + Dεk`(u¯, δu) + o(δu). ∂εij ∂εij ∂εij ∂εk` · T ij (u¯) E ijk`(u¯) and | {z } | {z } 2 Dεij (u, v) = Dεij (u¯, v) + D εij (u¯, v, δu) + o(δu) where 2 d D εij (u¯, v, δu) = [Dεij (u¯ + αδu, v)]α 0 dα → 1 = δuk v + δuk v 2 ∇i · ∇j k ∇j · ∇i k AleˇsJanka VI. Problems of elasto-statics 2.1 Weak formulation of elasto-statics (Lagrange formul.) g) Linearize around the known state u,¯ express the problem in the unknown δu V : find δu V such that ∈ 0 ∈ 0 T ij (u¯)+E ijk`(u¯) Dε (u¯, δu) Dε (u¯, v)+D2ε (u¯, v, δu) dx k` · ij ij ΩZ0 = F k v dx + g k v dΓ + o(δu). v V 0 k k ∀ ∈ 0 ΩZ0 ΓZN Collect known terms onto the right-hand side, neglect o(δu) terms: Linearized problem for δu (one iteration of Newton’s method): Given initial guess u¯, find a correction δu V for which ∈ 0 ijk` ij 2 E (u¯) Dεk`(u¯, δu) Dεij (u¯, v)+T (u¯) D εij (u¯, v, δu) dx Z Ω0 = F k v dx + g k v dΓ T ij (u¯)Dε (u¯, v) v V .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    9 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us