Runge-Kutta Scheme Takes the Form   K1 = Hf (Tn, Yn);  K2 = Hf (Tn + Αh, Yn + Βk1); (5.11)   Yn+1 = Yn + A1k1 + A2k2

Runge-Kutta Scheme Takes the Form   K1 = Hf (Tn, Yn);  K2 = Hf (Tn + Αh, Yn + Βk1); (5.11)   Yn+1 = Yn + A1k1 + A2k2

Approximate integral using the trapezium rule: h Y (t ) ≈ Y (t ) + [f (t ; Y (t )) + f (t ; Y (t ))] ; t = t + h: n+1 n 2 n n n+1 n+1 n+1 n Use Euler's method to approximate Y (tn+1) ≈ Y (tn) + hf (tn; Y (tn)) in trapezium rule: h Y (t ) ≈ Y (t ) + [f (t ; Y (t )) + f (t ; Y (t ) + hf (t ; Y (t )))] : n+1 n 2 n n n+1 n n n Hence the modified Euler's scheme 8 K1 = hf (tn; yn) > h <> y = y + [f (t ; y ) + f (t ; y + hf (t ; y ))] , K2 = hf (tn+1; yn + K1) n+1 n 2 n n n+1 n n n > K1 + K2 :> y = y + n+1 n 2 5.3.1 Modified Euler Method Numerical solution of Initial Value Problem: dY Z tn+1 = f (t; Y ) , Y (tn+1) = Y (tn) + f (t; Y (t)) dt: dt tn Use Euler's method to approximate Y (tn+1) ≈ Y (tn) + hf (tn; Y (tn)) in trapezium rule: h Y (t ) ≈ Y (t ) + [f (t ; Y (t )) + f (t ; Y (t ) + hf (t ; Y (t )))] : n+1 n 2 n n n+1 n n n Hence the modified Euler's scheme 8 K1 = hf (tn; yn) > h <> y = y + [f (t ; y ) + f (t ; y + hf (t ; y ))] , K2 = hf (tn+1; yn + K1) n+1 n 2 n n n+1 n n n > K1 + K2 :> y = y + n+1 n 2 5.3.1 Modified Euler Method Numerical solution of Initial Value Problem: dY Z tn+1 = f (t; Y ) , Y (tn+1) = Y (tn) + f (t; Y (t)) dt: dt tn Approximate integral using the trapezium rule: h Y (t ) ≈ Y (t ) + [f (t ; Y (t )) + f (t ; Y (t ))] ; t = t + h: n+1 n 2 n n n+1 n+1 n+1 n Hence the modified Euler's scheme 8 K1 = hf (tn; yn) > h <> y = y + [f (t ; y ) + f (t ; y + hf (t ; y ))] , K2 = hf (tn+1; yn + K1) n+1 n 2 n n n+1 n n n > K1 + K2 :> y = y + n+1 n 2 5.3.1 Modified Euler Method Numerical solution of Initial Value Problem: dY Z tn+1 = f (t; Y ) , Y (tn+1) = Y (tn) + f (t; Y (t)) dt: dt tn Approximate integral using the trapezium rule: h Y (t ) ≈ Y (t ) + [f (t ; Y (t )) + f (t ; Y (t ))] ; t = t + h: n+1 n 2 n n n+1 n+1 n+1 n Use Euler's method to approximate Y (tn+1) ≈ Y (tn) + hf (tn; Y (tn)) in trapezium rule: h Y (t ) ≈ Y (t ) + [f (t ; Y (t )) + f (t ; Y (t ) + hf (t ; Y (t )))] : n+1 n 2 n n n+1 n n n 5.3.1 Modified Euler Method Numerical solution of Initial Value Problem: dY Z tn+1 = f (t; Y ) , Y (tn+1) = Y (tn) + f (t; Y (t)) dt: dt tn Approximate integral using the trapezium rule: h Y (t ) ≈ Y (t ) + [f (t ; Y (t )) + f (t ; Y (t ))] ; t = t + h: n+1 n 2 n n n+1 n+1 n+1 n Use Euler's method to approximate Y (tn+1) ≈ Y (tn) + hf (tn; Y (tn)) in trapezium rule: h Y (t ) ≈ Y (t ) + [f (t ; Y (t )) + f (t ; Y (t ) + hf (t ; Y (t )))] : n+1 n 2 n n n+1 n n n Hence the modified Euler's scheme 8 K1 = hf (tn; yn) > h <> y = y + [f (t ; y ) + f (t ; y + hf (t ; y ))] , K2 = hf (tn+1; yn + K1) n+1 n 2 n n n+1 n n n > K1 + K2 :> y = y + n+1 n 2 Taylor Series of f (tn + h; Y (tn) + K1) in two variables: @ @ K = h f (t ; Y (t )) + h f (t ; Y (t )) + K f (t ; Y (t )) + O h2; K 2 : 2 n n @t n n 1 @Y n n 1 Since K1 = hf (tn; Y (tn)) = O(h), 1 (K + K ) = hf (t ; Y (t )) 2 1 2 n n h2 @ @ + f (t ; Y (t )) + f (t ; Y (t )) f (t ; Y (t )) + O h3 ; 2 @t n n n n @Y n n Expression to be compared with Taylor expansion of Y (tn+1) 5.3.1 Modified Euler Method | Local truncation error (1/3) Local truncation error due to the approximation: 1 Y (t ) ≈ Y (t ) + (K + K ) n+1 n 2 1 2 where K1 = hf (tn; Y (tn)) and K2 = hf (tn + h; Y (tn) + K1). Since K1 = hf (tn; Y (tn)) = O(h), 1 (K + K ) = hf (t ; Y (t )) 2 1 2 n n h2 @ @ + f (t ; Y (t )) + f (t ; Y (t )) f (t ; Y (t )) + O h3 ; 2 @t n n n n @Y n n Expression to be compared with Taylor expansion of Y (tn+1) 5.3.1 Modified Euler Method | Local truncation error (1/3) Local truncation error due to the approximation: 1 Y (t ) ≈ Y (t ) + (K + K ) n+1 n 2 1 2 where K1 = hf (tn; Y (tn)) and K2 = hf (tn + h; Y (tn) + K1). Taylor Series of f (tn + h; Y (tn) + K1) in two variables: @ @ K = h f (t ; Y (t )) + h f (t ; Y (t )) + K f (t ; Y (t )) + O h2; K 2 : 2 n n @t n n 1 @Y n n 1 5.3.1 Modified Euler Method | Local truncation error (1/3) Local truncation error due to the approximation: 1 Y (t ) ≈ Y (t ) + (K + K ) n+1 n 2 1 2 where K1 = hf (tn; Y (tn)) and K2 = hf (tn + h; Y (tn) + K1). Taylor Series of f (tn + h; Y (tn) + K1) in two variables: @ @ K = h f (t ; Y (t )) + h f (t ; Y (t )) + K f (t ; Y (t )) + O h2; K 2 : 2 n n @t n n 1 @Y n n 1 Since K1 = hf (tn; Y (tn)) = O(h), 1 (K + K ) = hf (t ; Y (t )) 2 1 2 n n h2 @ @ + f (t ; Y (t )) + f (t ; Y (t )) f (t ; Y (t )) + O h3 ; 2 @t n n n n @Y n n Expression to be compared with Taylor expansion of Y (tn+1) 0 Substitute Y (tn) = f (tn; Y (tn)) and 00 d @ d @ Y (tn)= f (t; Y (t)) = f (tn; Y (tn)) + Y (tn) f (tn; Y (tn)); dt @t dt @Y tn @ @ = f (t ; Y (t )) + f (t ; Y (t )) f (t ; Y (t )); @t n n n n @Y n n to get Y (tn + h) = Y (tn) + hf (tn; Y (tn)) h2 @ @ + f (t ; Y (t )) + f (t ; Y (t )) f (t ; Y (t )) + O h3 : (5.10) 2 @t n n n n @Y n n 5.3.1 Modified Euler Method | Local truncation error (2/3) Taylor Series of Y (tn+1) = Y (tn + h): h2 Y (t + h) = Y (t ) + hY 0(t )+ Y 00(t )+ O h3 : n n n 2 n and 00 d @ d @ Y (tn)= f (t; Y (t)) = f (tn; Y (tn)) + Y (tn) f (tn; Y (tn)); dt @t dt @Y tn @ @ = f (t ; Y (t )) + f (t ; Y (t )) f (t ; Y (t )); @t n n n n @Y n n to get Y (tn + h) = Y (tn) + hf (tn; Y (tn)) h2 @ @ + f (t ; Y (t )) + f (t ; Y (t )) f (t ; Y (t )) + O h3 : (5.10) 2 @t n n n n @Y n n 5.3.1 Modified Euler Method | Local truncation error (2/3) Taylor Series of Y (tn+1) = Y (tn + h): h2 Y (t + h) = Y (t ) + hY 0(t )+ Y 00(t )+ O h3 : n n n 2 n 0 Substitute Y (tn) = f (tn; Y (tn)) to get Y (tn + h) = Y (tn) + hf (tn; Y (tn)) h2 @ @ + f (t ; Y (t )) + f (t ; Y (t )) f (t ; Y (t )) + O h3 : (5.10) 2 @t n n n n @Y n n 5.3.1 Modified Euler Method | Local truncation error (2/3) Taylor Series of Y (tn+1) = Y (tn + h): h2 Y (t + h) = Y (t ) + hY 0(t )+ Y 00(t )+ O h3 : n n n 2 n 0 Substitute Y (tn) = f (tn; Y (tn)) and 00 d @ d @ Y (tn)= f (t; Y (t)) = f (tn; Y (tn)) + Y (tn) f (tn; Y (tn)); dt @t dt @Y tn @ @ = f (t ; Y (t )) + f (t ; Y (t )) f (t ; Y (t )); @t n n n n @Y n n 5.3.1 Modified Euler Method | Local truncation error (2/3) Taylor Series of Y (tn+1) = Y (tn + h): h2 Y (t + h) = Y (t ) + hY 0(t )+ Y 00(t )+ O h3 : n n n 2 n 0 Substitute Y (tn) = f (tn; Y (tn)) and 00 d @ d @ Y (tn)= f (t; Y (t)) = f (tn; Y (tn)) + Y (tn) f (tn; Y (tn)); dt @t dt @Y tn @ @ = f (t ; Y (t )) + f (t ; Y (t )) f (t ; Y (t )); @t n n n n @Y n n to get Y (tn + h) = Y (tn) + hf (tn; Y (tn)) h2 @ @ + f (t ; Y (t )) + f (t ; Y (t )) f (t ; Y (t )) + O h3 : (5.10) 2 @t n n n n @Y n n and 1 (K + K ) = hf (t ; Y (t )) 2 1 2 n n h2 @ @ + f (t ; Y (t )) + f (t ; Y (t )) f (t ; Y (t )) + O h3 2 @t n n n n @Y n n 1 imply that Y (t ) = Y (t ) + (K + K ) + O h3 .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    23 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us