Elliptic Modular Forms

Elliptic Modular Forms

Elliptic modular forms Hironori Shiga Version May 10, 2008 Contents 1 SL2(Z) and elliptic curves 2 1.1 SL2(Z) and the moduli of complex tori . 2 1.2 The Fundamental region and a system of generators . 3 1.3 The Weierstrass } function . 5 1.4 Nonsingular cubics and the invariant j ............................. 9 1.5 Elliptic modular function j(¿).................................. 11 2 Modular forms for SL2(Z) 14 2.1 Cusps . 14 2.2 Concept of modular forms . 15 2.3 Eisenstein series . 16 2.4 Discriminant form . 19 2.5 Eisenstein series E2(z)...................................... 19 2.6 Algebra M(¡)........................................... 21 2.7 The Dedekind ´ function . 24 3 Modular form for congruence subgroups 26 3.1 Geometry of congruence subgroups . 27 3.2 Principal congruence subgroup ¡(N).............................. 27 3.3 Recalling the Riemann-Roch theorem . 30 3.4 Dimension formula for congruence subgroups . 30 4 Hecke operators and Hecke eigen forms 34 4.1 Preparatory consideration . 34 4.2 Hecke operator T (n)....................................... 35 4.3 Hecke eigen form . 37 4.4 Examples . 39 5 Theta functions 39 6 An example: how it works the theory applied to number theoretic problems 40 1 1 SL2(Z) and elliptic curves 1.1 SL2(Z) and the moduli of complex tori De¯nition 1.1. For !1;!2 2 C ¡ f0g with ¿ = !2=!1 2= R, we de¯ne a lattice in C by ¤ = ¤(!1;!2) = fm!1 + n!2 : m; n 2 Zg: Proposition 1.1. We have 0 0 () 9 2 0 0 ¤(!1;!2) = ¤(!1;!2) M GL(2; Z); (!1;!2) = (!1;!2)M: Proposition 1.2. For ¿; ¿ 0 2 H = fz 2 C : Im (z) > 0g , we have ( ¶ a b a¿ + b ¤(1;¿ 0) = k¤(1;¿); (k 2 C ¡ f0g) () 9M = 2 SL (Z); ¿ 0 = : c d 2 c¿ + d De¯nition 1.2. We de¯ne a complex torus T (!1;!2) = C=¤(!1;!2);T (¿) = C=¤(1;¿): Theorem 1.1. ( ¶ a b a¿ + b T (¿) » T (¿ 0) () 9M = 2 SL (Z); ¿ 0 = : biholo c d 2 c¿ + d [proof]. ((=) is apparaent from the above Proposition. We show (=)). Let ¼(resp. ¼0) be the canonical projection from C to T (¿)( resp.T (¿ 0)). And let f : T (¿) ! T (¿ 0) be a biholomorphic map. We suppose f(O) = O0, with ¼(0) = O; ¼0(0) = O0. f 0 ~ has a lifting f1 : C ! T (¿ ) in a natural way. It induces a analytic function f : U ! C de¯ned in a neighborhood U of 0. And f~ has an analytic continuation on the whole plane C as a possibly multivalued analytic function. Here, by the Monodromy theorem f~ is single valued. f~ C - C ¼ ¼0 ? f ? T (¿) - T (¿ 0) Diagram 1:Lifting f~ of f If we consider f~¡1, by the Monodromy theorem again, we can show f~ is injective. So f~ : C ! f~(C) is a biholomorphic map. By the Riemann uniformization theorem, the image f~(C) cannot be a proper subdomain. So f~ : C ! C is a bijective map, and it is biholomorphic. By the Weierstrass singularity theorem we can show that Aut(H) is a group of nontrivial linear functions. Hence we may put f~(z) = kz; note that we supposed f(O) = O0. So we have ¤(1;¿ 0) = k¤(1;¿). q.e.d. 2 1.2 The Fundamental region and a system of generators Notations: P SL2(R) = SL2(R)= § I = Aut(H); ¡ := SL2(Z); ¡ := SL2(Z)= § I; ½ ¡ \ in general,( for a¶ subgroup G ¡; G := G=(< I > G); a b ¡(N) := f 2 ¡) : a ´ d ´ 1 (mod N ); b ´ c ´ 0 (mod N )g C ¡(N 2 Z+): c d De¯nition 1.3. ¡(N) is called the principal congruence subgroup of level N. Remark 1.1. Note ¡I2 = ¡(N) N > 2 . So ¡(2) = ¡(2)= § I; ¡(N) = ¡(N)(N > 2): De¯nition 1.4. ( ¶ a b ¡ (N) := f 2 ¡: c ´ 0 (mod N )g; 0 c d ( ¶ a b ¡ (N) := f 2 ¡ (N): a ´ d ´ 1 (mod N )g: 1 c d 0 De¯nition 1.5. Let G be a subgroup of ¡. G acts on H. Two points z1 and z2 are said to be G-equivalent, if we have z2 = g(z1) for some g 2 G. A closed region in H is said to be a fundamental region of G, if (1) Every point z 2 H is G-equivalent to a point in F . (2) Any two di®erent points in the interior of F are not G-equivalent. Theorem 1.2. The closed region 1 F = fz 2 H : jRe zj · and jzj ¸ 1g (1.1) 2 is a fundamental region for ¡. F i e2 Πi3 eΠi3 0 Re - 1 1 2 2 Fundamental region for ¡ [proof]. (i) F contains all representatives. Set ( ¶ ( ¶ 1 1 0 ¡1 T = ;S = : 0 1 1 0 3 ( ¶ a b G := hS; T i ½ ¡. For a ¯xed z 2 H and g = 2 G we have c d Im z Im g(z) = : jcz + dj2 2 2 fjcd + dj : c; d 2 Z ¡ f(0; 0)g; coprimeg has the minimum, so Im g(z) has the maximum. Let g0 realizes k § ¢ ¢ ¢ k0 2 j j · 1 the maximum, so do T g0 (k = 0; 1; ). And we can ¯nd g = T g0 G such that g(z) 2 . We have g(z) 2 F . In fact, if we have g(z) 2= F , it holds jg(z)j < 1. Take S(g(z)). We have Im g(z) Im S(g(z)) = > Im g(z): jg(z)j2 This is contradicts the maximality. So we could ¯nd a g 2 G such that g(z) 2 F . (ii) Equivalent points. ( ¶ a b Suppose z1; z2 are equivalent, and we have z2 = g(z1); g = 2 ¡ ¡ f§Ig. Assume Im z2 = p c d Im z1 ¸ j j ¢ 3 · j j · j j j j · 2 Im z1 . So we have c c Im z1 (c Re z1 + d) + ic Im z1 = cz1 + d 1. We can jcz1+dj 2 see that it must hold jcj · 1. By observing jcz1j · 1=2 we have jdj · 1. So we have only restricted possibilities: (a) c = 0; d = §1 =) g : az + b § ) ¡ 1 (b) c = 1; d = 0 = g : a z § ) ¡1 2¼i=3 (c) c = d = 1 = g : a + z+1 and z1 = e ¡ § ) ¡1 ¼i=3 (d) c = d = 1 = g : a + z¡1 and z1 = e . In any case z1 and z2 cannot stay inside F at the same time. -1 -1 F2 F z + 1 z - 1 1 i i e2 Πi3 eΠi3 ¬ ® - 1 1 - 1 1 2 0 2 2 0 2 Figures of case (c)(d) q.e.d. Proposition 1.3. Let z1; z2 2 @F . z1 and z2 are ¡-equivalent () (1) z2 ¡ z1 = §1; jRe z1j = jRe z2j = 1=2 or 1 (2) z2 = ¡ ; jz1j = jz2j = 1. z1 We use the notation Gz = fg 2 G : g(z) = zg, the isotropy group for z. Set ( ¶ ( ¶ 1 1 0 ¡1 T = ;S = : 0 1 1 0 4 Proposition 1.4. We have (i) ¡i = f§I; §Sg 2 2¼i=3 (ii) ¡! = f§I; §ST; §(ST ) g;! = e 2 2¼i=6 (iii) ¡¡! = f§I; §T S; §(TS) g; ¡! = e (iv) ¡z = §I; otherwise: [proof]. We can solve cz2 + (d ¡ a)z ¡ b = 0; ad ¡ bc = 1 (a; b; c; d 2 Z) for z = i; !; ¡!2. Corollary 1.1. ¡ acts on H as a discrete group. Theorem 1.3. We have ¡ = hS; T: § idi: [proof]. Take an element γ 2 ¡. According to the part (i) of the proof of Theorem 1.2 we can ¯nd g 2 G = hS; T i so that we have gγ(2i) 2 F . Namely it holds gγ(2i) = 2i. So gγ 2 I2i = f§idg. Hence we obtain the required conclusion. q.e.d. 1.3 The Weierstrass } function De¯nition 1.6. Let ¤ = ¤(!1;!2) be a lattice in C. The Weierstrass } function is de¯ned by ( ¶ 1 X 1 1 }(z) = + ¡ : (1.2) z2 (z ¡ !)2 !2 !2¤¡f0g Remark 1.2. For a lattice ¤, 0 0 X 1 X X ( means the sum ) !k !2¤¡f0g is absolute convergent for k ¸ 3, and is conditional convergent for k = 2. Theorem 1.4. (i) }(z) is meromorphic on C and doubly periodic, i.e. }(z + !) = }(z)(! 2 ¤): (ii) }(z) has double poles at z = ! 2 ¤, and is an even function of order 2. 0 (iii) } is an odd function of order 3. It has zeros at half lattice points z = !1=2;!2=2; (!1 + !2)=2, and has a triple poles at z = ! 2 ¤. 0 0 [proof]. (i) We have } (z + !i) = } (z)(i = 1; 2). So }(z + !i) ¡ }(z) = ci (c : constant). By putting z = ¡!i=2 we get ci = 0. (ii)(iii) follows from the following general argument. Lemma 1.1. (i) Let f be a doubly periodic meromorphic function (=6 0) for a lattice ¤. f takes every complex value ® same times (counting multiplicities) in a period parallelogram Pa = f¸!1 + ¹!2 + a : 0 < ¸ < 1; 0 < ¹ < 1g provided f =6 ®; 1 on @Pa. 5 (ii) Let f be a doubly periodic meromorphic function. a1; : : : ; ar be its representatives of zeros, and b1; : : : ; br be the representatives of poles. Then we have a1 + ::: + ar ¡ (b1 + ::: + br) 2 ¤: [proof]. (i) By the argument principle Z 0 1 f f 2 g ¡ f 2 1g ¡ dz = ] z Pa : f(z) = ® ] z Pa : f(z) = : 2¼i @Pa f ® By the periodicity the left hand side is equal to 0.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    42 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us