Parameter Estimation: Method of Moments (PDF)

Parameter Estimation: Method of Moments (PDF)

Parameter Estimation Parameter Estimation Fitting Probability Distributions Method of Moments MIT 18.443 Dr. Kempthorne Spring 2015 1 MIT 18.443 Parameter EstimationFittingProbability DistributionsMethod of MomentsMoments Method of Moments Parameter Estimation Examples (Poisson, Normal, Gamma Distributions) Outline 1 Parameter Estimation Method of Moments Examples (Poisson, Normal, Gamma Distributions) Parameter EstimationFittingProbability DistributionsMethod ofMoments 2 MIT 18.443 Parameter EstimationFittingProbability DistributionsMethod ofMoments Method of Moments Parameter Estimation Examples (Poisson, Normal, Gamma Distributions) Method of Moments One-Sample Model X1; X2;:::; Xn i.i.d. r.v.'s. with density function f (x j θ) Joint density of X = (X1; X2;:::; Xn) is given by: n Y f (x1;:::; xn j θ) = f (x1 j θ) × · · · × f (xn j θ) = f (xi j θ) i=1 Population and Sample Moments k µk = E [X ]: kth population moment, where k is a positive integer. n 1 X k µ^k = xi : kth sample moment. n i=1 3 MIT 18.443 Parameter EstimationFittingProbability DistributionsMethod of Moments Moments Method of Moments Parameter Estimation Examples (Poisson, Normal, Gamma Distributions) Method of Moments Method of Moments 1 Calculate low-order moments, as functions of θ 2 Set up a system of equations setting the population moments (as functions of the parameters in step 1) equal to the sample moments, and derive expressions for the parameters as functions of the sample moments. 3 Insert the sample moments into the solutions of step 2. 4 MIT 18.443 Parameter EstimationFittingProbability DistributionsMethod of Moments Moments Method of Moments Parameter Estimation Examples (Poisson, Normal, Gamma Distributions) Outline 1 Parameter Estimation Method of Moments Examples (Poisson, Normal, Gamma Distributions) 5 MIT 18.443 Parameter EstimationFittingProbability DistributionsMethod of Moments Moments Method of Moments Parameter Estimation Examples (Poisson, Normal, Gamma Distributions) Example: Gamma Distribution Example 8.4.A Poisson Distribution For X 1; X2;:::; Xn i.i.d. Poisson(λ), λ = E[X ] n 1 X µ^1 = X = xi n i=1 ^ Method of Moments Estimate: λMOM = X : 2 2 2 Note: Var(X ) = E [X ] − (E [X ]) = µ2 − [µ1] = λ. ^∗ 2 So, an alternative is λ = µ^ − µ^ : MOM 2 1 6 MIT 18.443 Parameter EstimationFittingProbability DistributionsMethod of Moments Moments Method of Moments Parameter Estimation Examples (Poisson, Normal, Gamma Distributions) Method of Moments: Poisson Distribution ^ Method-of-Moments Estimate: λMOM = X : ^ The sampling distribution of λMOM is well-defined. ^ Pn nλMOM = S = i=1 Xi where Xi iid Poisson(λ): S ∼ Poisson(nλ): Because E [S] = nλ and Var[S] = nλ, it follows that ^ ^ E [λMOM ] = λ and Var[λMOM ] = λ/n: ^ λMOM is unbiased. ^ As n ! 1; λ MOM ! λ and the sampling distribution concentrates about λ, with the standard deviation: q λ σ^ = ( the standard error of λ^) λMOM n For large n, by the Central Limit Theorem (CLT), ^ λMOM − λ L [] −−! N(0; 1): σ^ λMOM 7 MIT 18.443 Parameter EstimationFittingProbability DistributionsMethod of Moments Moments Method of Moments Parameter Estimation Examples (Poisson, Normal, Gamma Distributions) Method of Moments: Normal Distribution Example 8.4.B Normal Distribution 2 For X 1; X2;:::; Xn i.i.d. Normal(µ, σ ); µ1 = E (X ) = µ 2 2 2 µ2 = E (X ) = µ + σ 2 Solve for θ = (µ, σ ) µ = µ1 2 2 σ = µ2 − µ1 n 1 X µ^ = µ^1 = X = xi n i=1 n n 2 2 1 X 2 2 1 X 2 σ^ = µ^2 − µ^1 = xi − X = (xi − X ) n n i=1 i=1 Sampling distributions: 2 µ^ ∼ N(µ, σ =n) n 2 2 ( σ2 )^σ ∼ χn−1 (independent of µ^) 8 MIT 18.443 Parameter EstimationFittingProbability DistributionsMethod of Moments Moments Method of Moments Parameter Estimation Examples (Poisson, Normal, Gamma Distributions) Method of Moments: Gamma Distribution Gamma Distribution as Sum of IID Random Variables Define W1;:::; WK i.i.d. Gamma(α; λ) random variables Density function: λα f (w j α; λ) = wα−1 e −λw ; w > 0 Γ(α) Moment-generating function: t M (t) = E [e tWj ] = (1 − )−α Wj λ Moment-generating function of V = W1 + W2 + ··· Wk : tV t(W1+···Wk ) MV (t) = E [e ] = E [e ] tW1 tW2 tWk = E [e ]E [e ] ··· E [e ] t −K α = (1 − ) λ So V ∼ Gamma(kα; λ): 9 MIT 18.443 Parameter EstimationFittingProbability DistributionsMethod of Moments Moments Method of Moments Parameter Estimation Examples (Poisson, Normal, Gamma Distributions) Method of Moments: Gamma Distribution Gamma Distribution as Sum of IID Random Variables The Gamma distribution models the total waiting time for k successive events where each event has a waiting time of Gamma(α=k; λ): Gamma(1; λ) is an Exponential(λ) distribution Gamma(k; λ) is distribution of sum of K iid Exponential(λ) r.v.s 10 MIT 18.443 Parameter EstimationFittingProbability DistributionsMethod of Moments Moments Method of Moments Parameter Estimation Examples (Poisson, Normal, Gamma Distributions) Method of Moments: Gamma Distribution Moments of Gamma Distribution tW t −α W ∼ Gamma(α; λ) with mgf MW (t) = E [e ] = (1 − λ ) α µ = E [W ] = M0 (t = 0) = 1 W λ α(α + 1) µ = E [W 2] = M00 (t = 0) = 2 W λ2 α µ − µ2 = Var[W ] = M00 (t = 0) − (E [W ])2 = 2 1 W λ2 Method-of-Moments(MOM) Estimator ^ µ^1 W λMOM = 2 = 2 µ^2 − µ^1 σ^W 2 2 µ^1 W α^ = λµ^ 1 = = MOM 2 2 µ^ − µ^ σ^ 2 1 W 11 MIT 18.443 Parameter EstimationFittingProbability DistributionsMethod of Moments Moments Method of Moments Parameter Estimation Examples (Poisson, Normal, Gamma Distributions) Method of Moments: Gamma Distribution Method-of-Moments(MOM) Estimator ^ µ^1 W λMOM = 2 = 2 µ^2 − µ^1 σ^W 2 2 ^ µ^1 W α^MOM = λµ1 =2 = 2 µ^2 − µ^1 σ^W NOTE: MOM Estimator of λ is ratio of sample mean to variance (units=?) MOM Estimator of α is ratio of squared sample mean to variance (units=?) λ is the rate parameter and α is the shape parameter. ^ What are the sampling distributions of λ and α^? 12 MIT 18.443 Parameter EstimationFittingProbability DistributionsMethod of Moments Moments Method of Moments Parameter Estimation Examples (Poisson, Normal, Gamma Distributions) Method-of-Moments: Consistency Parameter Estimation Context Suppose X1;:::; Xn are iid with density/pmf function f (x j θ): Let θ^n = θ^(Xn) be an estimate of θ based on Xn = (X1;:::; Xn) Definition The estimate θ^n is consistent for θ if for any E > 0; ^ lim P(jθn − θj > E) = 0: n!1 Consistency of Method-of-Moments Estimates If µk is finite, then µ^k is consistent for µk : Suppose the method-of-moments equations provide a ∗ one-to-one estimate of θ given the first k sample moments. ∗ Then, if the first k population moments exist, the method-of-moments estimate is consistent. 13 MIT 18.443 Parameter EstimationFittingProbability DistributionsMethod of Moments Moments Method of Moments Parameter Estimation Examples (Poisson, Normal, Gamma Distributions) Method-of-Moments: Sampling Distributions Sampling Distribution of Method-of-Moments Estimates ^ For special cases, the sampling distribution of θMOM is exactly known by probability theory E.g., Normal, Binomial, Poisson, Exponential In general, Bootstrap (Monte Carlo simulation) methods provide approximations to the sampling distributions of MOM estimates. E.g., Gamma(α; λ) distribution, unknown α (shape) Limiting distributions can be derived Apply Central Limit Theorem to obtain limiting distribution of sample moments. Apply transformation of variables to obtain limiting distribution of MOM estimates. 14 MIT 18.443 Parameter EstimationFittingProbability DistributionsMethod of Moments Moments MIT OpenCourseWare http://ocw.mit.edu 18.443 Statistics for Applications Spring 2015 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    15 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us