Particle Creation and Memory Effects in a Trapped Ion Quantum Simulator

Particle Creation and Memory Effects in a Trapped Ion Quantum Simulator

Albert-Ludwigs-Universität Freiburg Particle creation and memory effects in a trapped ion quantum simulator Matthias Wittemer Dissertation zur Erlangung des Doktorgrades der Fakultät für Mathematik und Physik der Albert-Ludwigs-Universität Freiburg 2019 Dekan: Prof. Dr. Wolfgang Soergel Betreuer und Erstgutachter: Prof. Dr. Tobias Schätz Zweitgutachter: apl. Prof. Dr. Bernd von Issendorff Tag der mündlichen Prüfung: 16. Dezember 2019 Prüfer: Prof. Dr. Marc Schumann apl. Prof. Dr. Thomas Filk Prof. Dr. Tobias Schätz Zusammenfassung Die fundamentalen Gesetze der Quantenmechanik sind von unseren Alltagserfahrun- gen weit entfernt. Sie sind jedoch hervorragend geeignet um Beobachtungen in mikro- skopisch kleinen physikalischen Systemen zu erklären und vorherzusagen und werden daher bereits für verschiedene Anwendungen genutzt. Darüber hinaus wird, in Kom- bination mit relativistischen Überlegungen, grundlegenden Phänomenen der Quan- tenmechanik eine zentrale Rolle in der Entwicklung unseres Universums zugespro- chen. In der vorliegenden Arbeit verwenden wir einen Quantensimulator basierend auf gefangenen Ionen, um zwei fundamentale quantenmechanische Effekte, die seit vielen Jahrzehnten umfangreich studiert werden, zu untersuchen. In unserer ersten Untersuchung implementieren wir nicht-adiabatische Änderungen des Fallenpotenti- als der Ionen, um Fluktuationen des Quantenvakuums zu verstärken. Theoretischen Arbeiten zufolge lässt sich dieser Mechanismus als Analogie zur Teilchenerzeugung während der inflationären Phase des jungen Universums interpretieren. Solche Teil- chen gelten als Keime für die Bildung der makroskopischen Strukturen unseres heu- tigen Universums. In unserer analogen Quantensimulation wird die Erzeugung dieser Teilchen durch die Anregung eines gequetschten Zustands in der Bewegung der Io- nen nachgewiesen. Ein bemerkenswertes Merkmal dieses Mechanismus ist die damit einhergehende Erzeugung einer Quantenverschränkung. Im Falle der kosmologischen Teilchen erstreckt sich diese Verschränkung über große, kosmische Entfernungen. In unserer zweiten Untersuchung betrachten wir das Konzept offener Quantensysteme mit einem möglichst einfachen System und unter nahezu idealen Bedingungen. Jedes natürliche Quantensystem interagiert unweigerlich mit seiner Umgebung und kann da- her nicht als isoliertes, sondern nur als offenes Quantensystem, welches Korrelationen mit seiner Umgebung aufbauen kann, betrachtet werden. Wir definieren ein offenes Zwei-Niveau-System im elektronischen Freiheitsgrad eines einzelnen gefangenen Ions, welches wir an eine bosonische Umgebung, bestehend aus einem Bewegungsfreiheits- grad des Ions, koppeln. Zudem implementieren wir eine einstellbare Wechselwirkung zwischen System und Umgebung, welche zur Verschränkung dieser beiden Systeme führt. Indem wir Messungen nur am offenen Quantensystem vollziehen beobachten wir nicht-Markov’sches Verhalten, welches wir mit einem rigoros definierten Maß quanti- fizieren. Dabei decken wir auf, dass die Quantifizierung solcher Quantengedächtnis- effekte durch intrinsische quantenmechanische Messunsicherheiten limitiert ist. Die Untersuchungen, die wir in der vorliegenden Arbeit präsentieren, erweitern die Mög- lichkeiten unserer Ionenfallen-Apparatur analoge Quantensimulationen fundamenta- ler Probleme der Quantenmechanik unter nahezu idealen Bedingungen durchzuführen immens. Darüber hinaus werden zukünftige Studien komplexerer Sachverhalte in rea- listischen Quantensystemen ermöglicht. Abstract The fundamental laws of quantum mechanics are far from our everyday life experi- ences. However, they have been extremely successful in explaining observations in mi- croscopic physical systems and are, already, harnessed for several applications. More- over, in combination with relativistic considerations, basic phenomena from quantum mechanics are accredited a central role in the (macroscopic) evolution of our universe. In this thesis, we employ a trapped ion quantum simulator to experimentally investi- gate two fundamental quantum mechanical effects that have been extensively studied for many decades. In the first investigation, we implement non-adiabatic changes of the ions’ trapping potential in order to amplify quantum vacuum fluctuations. Fol- lowing theoretical works by others, this mechanism can be interpreted as an analog to the creation of particles during cosmic inflation in the early universe. Such cosmologi- cal particles are considered as the seeds for the formation of the large-scale structures in our universe that we observe nowadays. In our analog quantum simulation, the creation of particles is evidenced by the detection of a squeezed state in the motion of the ions. A remarkable feature of this mechanism is the accompanying creation of quantum entanglement. In case of the cosmological particles, this entanglement spreads over large, cosmic distances. In the second investigation, we benchmark a theoretical concept in the framework of open quantum systems in a most basic system and under near-ideal conditions. In nature, any quantum system inevitably interacts with its environment and, thereby, needs ultimately to be considered an open system that can build up correlations and, even, entanglement with its environment. We im- plement a spin-1/2 system in the electronic degree of freedom of a single trapped ion, which we couple to a bosonic environment, formed by a motional degree of freedom of the ion. Further, we implement a tunable interaction between system and envi- ronment that, in turn, can lead to entanglement. By performing measurements on the open system only, we observe quantum non-Markovian behavior, which we quan- tify using a rigorously defined measure. Thereby, we reveal that the quantification of such quantum memory effects is fundamentally limited by fundamental quantum mechanical measurement uncertainties. The investigations presented in this thesis significantly expand the capabilities of our trapped ion platform to perform analog quantum simulations of fundamental quantum mechanical problems under near-ideal conditions, and enable future studies of increased complexity and under more realistic conditions. Contents 1 Introduction1 2 Theoretical concepts7 2.1 Quantum mechanics basics . .7 2.2 Cosmology . 16 2.3 Open quantum systems . 21 3 Experimental methods 25 3.1 Experimental setup . 25 3.2 Spin control . 42 3.3 Phonon control . 49 3.4 Spin-phonon coupling . 62 3.5 Numerical calculations . 69 4 Experiments and results 77 4.1 Phonon pair creation . 77 4.2 Quantum memory effects . 104 5 Conclusion and outlook 117 Bibliography 121 1 Introduction To this day, quantum mechanics is our best way to describe nature at the smallest length scales. Since its development in the early 20th century, see, e.g., the works by Dirac (1930) and von Neumann (1932), the theory has made remarkable achievements in explaining and predicting phenomena that are far from our everyday experiences. Today, intriguing effects like quantum entanglement are routinely observed and har- nessed for multiple applications in well isolated and microscopic physical systems. However, physicists as well as philosophers have been wondering how the fundamen- tal laws can be translated into the macroscopic (classical) description of our world, see Bohr (1920) and Schrödinger (1926), which lead Schrödinger to his famous thought experiment (Schrödinger, 1935), addressing the bizarre consequences of such transla- tions onto macroscopic and even living objects. The fundamental laws of quantum mechanics have even more intriguing conse- quences when considered under relativistic conditions. Employing the framework of quantum field theory, such approaches give rise to phenomena like the Sauter- Schwinger effect (Sauter, 1931, 1932; Schwinger, 1951), Hawking radiation (Hawking, 1974, 1975), and the Unruh effect (Fulling, 1973; Davies, 1975; Unruh, 1976). All of these effects, and also other related phenomena like the static Casimir effect (Casimir, 1948) as well as its dynamical counter-part (Moore, 1970), have their origin in the intriguing description of the vacuum according to quantum field theory. While the vacuum is classically often considered as a space that is entirely devoid of matter, according to quantum field theory, the vacuum is not empty but filled with ubiqui- tous fluctuations. Taking account for Heisenberg’s uncertainty principle (Heisenberg, 1927), these fluctuations can be pictured as the random creation and annihilation of pairs of virtual particles. Certain, often considered extreme, conditions acting on the quantum fields corresponding to these particles, may then lead to the effects above. In recent theoretical investigations quantum fluctuations have been accredited an in- creasingly central role in the formation and evolution of our universe, see Brout et al. (1978), García-Bellido (1999), and Martin (2019). One key aspect of such considera- tions is the cosmological creation of pairs of particles in curved space-time, see Parker (1968) and Birrell and Davies (1982), and also Schrödinger (1939). In particular, during a period of cosmic expansion in the early universe, quantum fluctuations have been torn apart and amplified, and are considered to be responsible for the cosmic large-scale structures observable nowadays, cf. Liddle and Lyth (2000). Moreover, it is even considered that the creation of particles under these extreme conditions is 2 1 Introduction accompanied by the formation of quantum entanglement at large, cosmic distances (Martín-Martínez and Menicucci, 2012). Thus, Einstein’s phrasing

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    142 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us