Math 545 1. Let G Be a Group and a ∈ G. (A) the Order of a (In G) Is The

Math 545 1. Let G Be a Group and a ∈ G. (A) the Order of a (In G) Is The

Math 545 1. Let G be a group and a ∈ G. (a) The order of a (in G) is the least positive integer n, written |a| = n, such that an = e. Thus |a| = n =⇒ a1 6= e, a2 6= e, . , a(n−1) 6= e, and an = e. (b) |a| = ∞ ⇐⇒ am 6= e∀m ∈ Z+ ⇐⇒ a−m 6= e∀m ∈ Z+ (since am 6= e =⇒ (am)−1am 6= (am)−1e =⇒ e 6= (am)−1 =⇒ e 6= a−m) ⇐⇒ am 6= e∀m 6= 0 ∈ Z ⇐⇒ am = e (m ∈ Z) =⇒ m = 0 ⇐⇒ am = e (m ∈ Z) ⇐⇒ m = 0 (since m = 0 =⇒ am = e) 2. Find orders of all elements of Z4. |0| = 1. |1| = 4, since 1.1 = 1 6= 0, 2.1 = 2 6= 0, 3.1 = 3 6= 0, and 4.1 = 4 ≡4 0. |2| = 2, since 1.2 = 2 6= 0, 2.2 = 4 ≡4 0. |3| = 4, since 1.3 = 3 6= 0, 2.3 = 6 ≡4 2 6= 0, 3.3 = 9 ≡4 1 6= 0, and 4.3 = 12 ≡4 0. 3. Find orders of all elements of U(14). U(14) = {1, 3, 5, 9, 11, 13}. |1| = 1 (since 1.1 ≡12 1) 1 2 3 4 5 |5| = 6, since 5 = 5 6= 1, 5 = 25 ≡14 11 6= 1, 5 ≡14 13 6= 1, 5 ≡14 9 6= 1, 5 ≡14 3 6= 1 and 6 1 2 3 5 ≡14 15 ≡14 1. Similarly, |3| = 6. |9| = 3, since 9 = 9 6= 1, 9 = 81 ≡14 11, 9 ≡14 99 ≡14 1. 1 2 2 Similarly, |11| = 3. |13| = 2 (since (13) = 13 6= 1, (13) ≡14 (−1) = 1). 4. Find orders of all elements of Z. |0| = 1 ( 0 is the identity of the additive group Z ). Let a 6= 0 ∈ Z. Then na 6= 0∀n ∈ Z+. =⇒ |a| = ∞ So all nonzero elements of Z have infinite order. 5. Find orders of all elements in R?, the group of nonzero real numbers under multiplication. |1| = 1 ( 1 is the identity of the multiplicative group R? ) and | − 1| = 2. Let a ∈ R? such that a∈ / {−1, 1}. Then an 6= 1∀n ∈ Z+. =⇒ |a| = ∞. So all elements of R?, other than 1 and -1, have infinite order. 6. Prove that in any group, an element and its inverse have the same order. Case 1. |a| 6= ∞ =⇒ ∃m ∈ Z+ such that am = e ⇐⇒ ∃m ∈ Z+ such that (a−1)m = e ⇐⇒ |a−1|= 6 ∞(since am = e ⇐⇒ (am)−1am = (am)−1e ⇐⇒ e = (am)−1 ⇐⇒ (a−1)m = e). −1 m1 Case 2. Assume |a| = m1 and |a | = m2. Prove m1 = m2. a = e(since |a| = m1) ⇐⇒ m1 −1 −1 −1 −1 −1 (a ) = e ⇐⇒ ⇐⇒ (a )m1 = e (notation and e = e). Now (a )m1 = e and −1 |a | = m2. Then m2 ≤ m1. −1 m2 −1 m2 −1 m2 m2 (a ) = e (since |a | = m2)(a ) = e (notation) ⇐⇒ a = e. Now a = e and |a| = m1 −1 m2 −1 −1 −1 m =⇒ m1 ≤ m2 ((a ) ) (notation) = e (since |a | = m2) = e. Now a2 = e and |a| = m1 −1 m1 m1 −1 −1 −1 =⇒ m1 ≤ m2 (def. of order). Also, (a ) = (a ) (notation) = e = e and |a | = m2 =⇒ m2 ≤ m1. 7. Prove that an abelian group with two elements of order 2 must have a subgroup of order 4. Let G be an abelian group and a, b ∈ G such that |a| = 2 and |b| = 2. Then H = {e, a, b, ab} is closed and therefore, by finite subgroup test, a subgroup of G. 8. Find the order of each element of the group Z10, the group of integers under addition modulo 10. |1| = |3| = |7| = |9| = 10, |2| = |4| = |6| = |8| = 5, |5| = 2, |0| = 1. 9. (a) Find the order of each element of the group U(30), the group of positive integers less than 30 and relatively prime to 30 under multiplication modulo 30. U(30) = {1, 7, 11, 13, 17, 19, 23, 29}: |1| = 1, |7| = 4, |11| = 2, |13| = 4, |17| = 4, |19| = 2, |23| = 4, and |29| = 2. 1 (b) Give a multiplication table for U(30). U(30) = {1, 7, 11, 13, 17, 19, 23, 29}: |1| = 1, |7| = 4, |11| = 2, |13| = 4, |17| = 4, |19| = 2, |23| = 4, and |29| = 2. 1 7 11 13 17 19 23 29 1 1 7 11 13 17 19 23 29 7 7 19 17 1 29 13 11 23 11 11 17 1 23 7 29 13 19 13 13 1 23 19 11 7 29 17 17 17 29 7 11 19 23 1 13 19 19 13 29 7 23 1 17 11 23 23 11 13 29 1 17 19 7 29 29 23 19 17 13 11 7 1 (c) Find all cyclic subgroups U(30) of order 4. < 7 >= {1, 7, 19, 13} =< 13 >, < 17 >= {1, 17, 19, 23 >=< 23 > (d) Find all noncyclic subgroups of U(30) of order 4. {1, 11, 19, 29}. 7. Let G be a group and x ∈ G. If |x| = 20, then find |x2|, |x5|, |x7|, |x11| and |x15|. k |x| Use the formula |x | = gcd(|x|,K) . 2 20 5 20 7 20 |x | = gcd(20,2) = 10, |x | = gcd(20,5) = 4, |x | = gcd(20,7) = 20, 11 20 15 20 |x | = gcd(20,11) = 20, |x | = gcd(20,15) = 4. 8. Find a multiplication table for the group G that contains elements a and b such that |a| = 7, |b| = 2 and |ab| = 2. (ab)2 = e =⇒ abab = e =⇒ ba = a−1b−1 = a6b (since |a| = 6 and |b| = 2 =⇒ a7 = e and b2 = e =⇒ a6 = a−1 and b = b−1). Thus the given group is {e, a, a2, a3, a4, a5, a6, b, ab, a2b, a3b, a4b, a5b, a6b}. A multiplication table is given below: e a a2 a3 a4 a5 a6 b ab a2b a3b a4b a5b a6b e e a a2 a3 a4 a5 a6 b ab a2b a3b a4b a5b a6b a a a2 a3 a4 a5 a6 e ab a2b a3b a4b a5b a6b b a2 a2 a3 a4 a5 a6 e a a2b a3b a4b a5b a6b b ab a3 a3 a4 a5 a6 e a a2 a3b a4b a5b a6b b ab a2b a4 a4 a5 a6 e a a2 a3 a4b a5b a6b b ab a2b a3b a5 a5 a6 e a a2 a3 a4 a5b a6b b ab a2b a3b a4b a6 a6 e a a2 a3 a4 a5 a6b b ab a2b a3b a4b a5b b b a6b a5b a4b a3b a2b ab e a6 a5 a4 a3 a2 a ab ab b a6b a5b a4b a3b a2b a e a6 a5 a4 a3 a2 a2b a2b ab b a6b a5b a4b a3b a2 a e a6 a5 a4 a3 a3b a3b a2b ab b a6b a5b a4b a3 a2 a e a6 a5 a4 a4b a4b a3b a2b ab b a6b a5b a4 a3 a2 a e a6 a5 a5b a5b a4b a3b a2b ab b a6b a5 a4 a3 a2 a e ab a6b a6b a5b a4b a3b a2b ab b a6 a5 a4 a3 a2 a e 10. If H and K are subgroups of G, show that H ∩ K is a subgroup of G. Apply the 1-step subgroup test: (1): e ∈ H and e ∈ K (since H and K are subgroups Of G). Thus e ∈ H ∩ K. (2) Let a, b ∈ H ∩ K. Then a, b ∈ H and a, b ∈ K. So a, b−1 ∈ H and a, b−1 ∈ K (since H and K are subgroups Of G). So ab−1 ∈ H and ab−1 ∈ K (since H and K are subgroups Of G). Hence ab−1 ∈ H ∩ K. 11. Let G be a finite abelian group and let a, b ∈ G. Prove that the set < a, b >= {aibj|i, j ∈ Z} is a subgroup of G. Apply the One-Step subgroup Test to H =< a, b >= {aibj|i, j ∈ Z} . First, show that H 6= ∅. The identity e = a0b0 of G is in H. Next, let aibj, akbl ∈ H. Prove (aibj)(akbl)−1 ∈ H. (aibj)(akbl)−1 = (aibj)(bl)−1(ak)−1(since (ab)−1 = b−1a−1 ∀a, b ∈ G) = (aibj)b−la−k (notation) = ai(bjb−l)a−k (associative law in the group G) = aia−k(bjb−l) (since G is abelian and bjb−l, a−k ∈ G, (bjb−l)a−k = a−k(bjb−l)) = ai−kbj−l (laws of exponent). So (aibj)(akbl)−1 = ai−kbj−l ∈ H (since i − k, j − l ∈ Z). 2.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    2 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us