Fat Tail Analysis and Package Fattailsr

Fat Tail Analysis and Package Fattailsr

Fat Tail Analysis and Package FatTailsR [email protected] 9th R/Rmetrics Workshop 27June2015 Villa Hatt – Zürich [email protected] Fat Tail Analysis and Package FatTailsR 9th R/Rmetrics Workshop 27June2015 1 / 26 Outline 1 Introduction 2 Mathematics 3 Fat tails: Application in finance 4 Conclusion [email protected] Fat Tail Analysis and Package FatTailsR 9th R/Rmetrics Workshop 27June2015 2 / 26 About InModelia Since 2009: a small company located in Paris Consulting services in data analysis Design of experiments Multivariate nonlinear modeling Neural networks Times series Software development in R June 2014: 8th R/Rmetrics workshop First version of R package FatTailsR introducing Kiener distributions with symmetric (3 parameters) and asymmetric (4 parameters) fat tails June 2015: 9th R/Rmetrics workshop Second version of R package FatTailsR including 3 functions for parameter estimation R package FatTailsRplot including advanced plotting functions [email protected] Fat Tail Analysis and Package FatTailsR 9th R/Rmetrics Workshop 27June2015 3 / 26 Fat tails It is now well established that financial markets exhibit fat tails. It occurs on all markets. SP500 janv. 1957 − déc. 2013 SP500 janv. 1957 − déc. 2013 100 µ F(X) > 0.995 14349 points ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●● ●● ● ● ● X − 14350 points daily ●●●●●●●●●●●●●● 1.0 ●●●●●●●● ●●●●●● ●●●● ● ●●● ●●●●●●●● ●●●●● ● ●● ● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●● ●●●● ●● 2975 points weekly ● ●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●● ●●● ● ●●●●●● ● ●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ● ●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●● ●●●●●● ●●●●●●●●● ● ●● ●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●● ●●●● ●●●●●● ● ●● ●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●● ●●●●●● ●●●●●●●● ● ●● ●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●● ●●●●● ●●●● ● ● ●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●● ●●● ●●●●● ● ● ●●●●●●●●●●●●●●●● ●●●●● ●●●●●●● ●●●● ●●●●● ● ● ●●●●●●●●●●●●●●●● ●●●● ●●●●●●●● ●●● ●●● 685 points monthly ● ● ●●●●●●●●●●●●●● ●●●●● ●●●●●●●● ●●● ●●● ● ● ●●●●●●●●●●●●●● ●●●●● ●●●● ●●●● ●●●●●● ● ● ●●●●●●●●●●●●●● ●●●● ●●●●●●● ●●● ●●●● ● ● ●●●●●●●●●●●●● ●●●● ●●●●●● ●●● ●●●●● ● ● ●●●●●●●●●●●● ●●●● ●●●●● ●●● ●●● ● ● ●●●●●●●●●●●● ●●●●● ●●●●● ●●● ●●● ● ● ●●●●●●●●●●●● ●●●● ●●●●● ●● ●●●● ● ● ●●●●●●●●●●● ●●●●● ●●●● ●●● ●●●● ● ● ●●●●●●●●●● ●●● ●●●●● ●●● ●●●●● ● ● − ●●● ●●●●● ●●● ●●●● ●● ●●● 0.999 ● ● 1 ●●● ●●●● ●●● ●●● ● ●●● ● ● ●●●●●●●●●● ●● ●●●● ●● ● ● ● ●●●●●●●●● ●●● ●●●● ●● ●●● ● ● ●●● ●●●●● ●●● ●●●● ●● ● ● ● 10 ●●● ●●●●● ●●● ●●● ●● ●● ● ● ●● ●●● ●● ●●● ● ●● ● ● ●●● ●●●● ●●● ●●● ● ●● ● ● ●●● ●●●● ●●● ●●●● ●● ●●● ● ● ●●● ●●●●● ●●● ●●● ●● ●● ● ● ●●● ●●●●● ●● ●●●● ● ●●● ● ● ●●● ●●●●● ●● ●●● ●● ●●● ● ● ●●●● ●●●● ●●● ●●●●● ●● ● ● ● ●●● ●●●●● ●●● ●●● ●● ●● ● ● ●●● ●●●● ●● ●●●● ●● ● ● ● ●●● ●●●● ●● ●●● ●● ● ● ● ●●●●●●● ●● ●●●● ●● ●● ● ● ●● ●●●● ●● ●●● ● ● ● ● ● ●● ●●● ●●● ●● ●● ● ● ● ●●● ●●● ●●● ●●● ● ● ● ● ●●●●●● ●● ●● ● ● ● ● ●●●●●● ●● ●●● ● ●● ● ● ●●●●●●● ●● ●● ●● ● ● ● ●●●●● ●● ●● ● ●● ● ● ●●●●● ●● ●● ●● ● ● ● ●●●●●● ●● ●● ● ● ● ● ●●●●● ●●● ●●●● ● ● ● ● ●●●●● ● ● ● ● ● ● ●●●●● ●● ●● ● ● ● ● ●●●●● ●● ●● ● ● 0.997 ● ● ●●●●● ●● ●● ● ● ● ● ●●●●●● ● ●● ● ● ● ●●●●●● ●●● ●● ● ● ● ● ●●●●● ●● ●● ● ● ● ● ●●●●● ● ● ● ● ● ● ●●●●● ●● ●● ● ● ● ● ●● ● ●● ● ● ● ●●●●● ●● ●●● ● ● ● ● ●●●● ● ● ● ● ● ●●●● ● ●● ● ● ● − ●●●●●● ●● ● ● ● ● 2 ●●●● ● ● ● ● ● ●●●●●● ● ●● ● ● ● ● ●● ●● ●● ● ● ● ●●●●● ●● ● ● ● ● ● 10 ●●●● ● ●● ● ● ●● ● ● ● ● ●●●●● ● ● ● ● ●●●●● ● ● ● ● ● ● ●●● ● ● ● ● F(X) < 0.005 ●●●● ● ●● ● ●●● ● ● ● ● ● ●●●●● ● ● ● ● ● ● ● ●● ● ● ● ● ●●● ● ● ● ● ●●●● ● ● ● ● ●●●● ● ● 0.995 ● ● ●●● ● ● ● ●●●● ● ● ● ● ● ● ●●●● ● 4 6 8 10 ● ● ●● ● ● ● ●●● ● ● ● ● ●●● ● ● ● ●●● ● ● ●●● ● ● ● ● ● ●● ● ● 0.5 ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● − ● ● ● ● ● 3 ● ● ● 0.004 ● ● ● ● ● ● ● ● ● 10 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 0.002 ● ● ● ● − ● ● 4 ● ● ● ● 10 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ● ●● ● ●● ● ● ●● ● ●● ● ●●● ● ●●● ● ●●● ● ●●● ●●●● ●●●● ●●●●●●● ●●●●●●●●● ●●●●●●●●●● 0.000 0.0 ●●● ● ● ●●●● ● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● −20 −15 −10 −5 − 10 5 −1 0 1 2 −10 −5 0 5 10 10 10 10 10 Figure : (a) SP500 daily log-returns (b) SP500 daily, weekly and monthly log-returns in log-log scale black dots = negative returns, white circles = positive returns ® ! lim F (x) x ¡ lim 1 F (x) x ¡ ®, ! 3.5 x Æ j j x ¡ Æ ¼ !¡1 !Å1 [email protected] Fat Tail Analysis and Package FatTailsR 9th R/Rmetrics Workshop 27June2015 4 / 26 Symmetric distributions K1. Asymmetric distributions K2, K3, K4 Last year 1, we introduced a family of four probability distributions which deal with symmetric and asymmetric fat tails. These distributions were named Kiener distributions or, simply, distributions K1, K2, K3, K4. They combine two log-logistic quantile functions, one for each tail. The parameters are: 2®! 1 1 ³ 1 1 ´ median ¹, scale γ, left tail ®, right tail !, shape parameter · ® ! or harmonic mean · 2 ® ! Æ Å Æ Å ³ ´ distorsion ± and eccentricity ² defined by ± ² 1 1 1 with bonds 1 ± 1 and 1 ² 1 Æ · Æ 2 ¡ ® Å ! ¡ · Ç Ç · ¡ Ç Ç Quantile functions of distributions K2(¹,γ,®,!), K3(¹,γ,·,±), K4(¹,γ,·,²), K1(¹,γ,·) 2 3 µ ¶ 1 µ ¶ 1 à logit(p) logit(p) ! p ¡ ® p ! (K2) x(p) ¹ γκ4 5 ¹ γκ e¡ ® e ! Æ Å ¡ 1 p Å 1 p Æ Å ¡ Å ¡ ¡ 2 3 µ ¶ 1 µ ¶ 1 µ ¶± µ ¶ p · p · p logit(p) ±logit(p) (K3) x(p) ¹ γκ4 ¡ 5 ¹ 2γκsinh e Æ Å ¡ 1 p Å 1 p 1 p Æ Å · ¡ ¡ ¡ 2 1 1 3 ² µ p ¶ · µ p ¶ · µ p ¶ · µ logit(p) ¶ ² logit(p) (K4) x(p) ¹ γκ4 ¡ 5 ¹ 2γκsinh e · Æ Å ¡ 1 p Å 1 p 1 p Æ Å · ¡ ¡ ¡ 2 1 1 3 µ p ¶ · µ p ¶ · µ logit(p) ¶ (K1) x(p) ¹ γκ4 ¡ 5 ¹ 2γκsinh ¹ γkogit(p, ·) Æ Å ¡ 1 p Å 1 p Æ Å · Æ Å ¡ ¡ 1P. Kiener, Explicit models for bilateral fat-tailed distributions and applications in finance with the package FatTailsR, 8th R/Rmetrics Workshop, Paris, 2014. http://www.inmodelia.com/fattailsr-en.html [email protected] Fat Tail Analysis and Package FatTailsR 9th R/Rmetrics Workshop 27June2015 5 / 26 Distribution K1 and some properties ³ x ¹ ´ Probability and density functions of distribution K1(¹,γ,·), t asinh ¡ Æ 2γκ 1 1 1 F (x) ³ x ¹ ´ f (x) f (0) Æ · asinh ¡ Æ 4γcosh(t)(1 cosh(·t)) Æ 8γ 1 e¡ 2γκ Å Å Logit-probability: Density as a function of the probability: ³ x ¹ ´ 1 logit(p) logit(F (x)) ·asinh ¡ f (x) sech( )p (1 p) Æ 2γκ Æ 2γ · ¡ Conversion between parameters ®, !, ·, ±, ² 1 1 µ 1 1 ¶ ² 1 µ 1 1 ¶ 1 1 1 1 ® ! · · ± ± ± ² ¡ ® ! · Æ 2 ® Å ! Æ · Æ 2 ¡ ® Å ! ® Æ · ¡ ! Æ · Å Æ ® ! Æ 1 ² Æ 1 ² Å ¡ Å Property 1: Pareto aymptotic functions ¯ ¯ ® ¯ ¯ ! ¯ x ¹ ¯¡ ¯ x ¹ ¯¡ lim F (x) ¯ ¡ ¯ lim 1 F (x) ¯ ¡ ¯ x Æ ¯ γκ ¯ x ¡ Æ ¯ γκ ¯ !¡1 !Å1 Property 2: Karamata theorem about slowly ®-varying and !-varying functions x f (x) x f (x) lim ® lim ! x F (x) Æ¡ x 1 F (x) Æ !¡1 !Å1 ¡ [email protected] Fat Tail Analysis and Package FatTailsR 9th R/Rmetrics Workshop 27June2015 6 / 26 Comparaison with other distributions Distributions K1, K2, K3, K4 are similar, but more tractable and easier to use than 2 Generalized Tukey lambda distribution and Tadikamalla and Johnson LU distribution . K2 and K4 distributions (Kiener, 2014): " µ ¶ 1/® µ ¶1/!# µ ¶ p ¡ p logit(p) ² logit(p) x(p) ¹ γκ ¹ 2γκsinh e · Æ Å ¡ 1 p Å 1 p Æ Å · ¡ ¡ Generalized Tukey lambda distribution (Ramberg et Schmeiser, 1972): 1 h ¸ ¸ i x(p) ¸1 (1 p) 4 p 3 Æ Å ¸2 ¡ ¡ Å LU distribution (Tadikamalla and Johnson, 1982): µ γ 1 ¶ x(p) » ¸ sinh logit(p) Æ Å ¡ ± Å ± 2Non-central Student distribution and Cauchy distribution were already discussed last year [email protected] Fat Tail Analysis and Package FatTailsR 9th R/Rmetrics Workshop 27June2015 7 / 26 Figures related to symmetric distribution K1 Quantiles : K1 ( µ = 0, γ = 1, κ = ... ) Probabilités : K1 ( µ = 0, γ = 1, κ = ... ) + Gauss ( σ = 3.2 ) Densités : K1 ( µ = 0, γ = 1, κ = ... ) + Gauss ( σ = 3.2 ) 20 1.0 0.15 κ κ κ 0.6 0.6 0.6 1 1 1 1.5 1.5 1.5 10 2 2 2 3.2 3.2 3.2 0.10 10 10 10 Gauss Gauss 0 0.5 0.05 −10 Kogit −20 0.0 0.00 0.0 0.5 1.0 −15 −10 −5 0 5 10 15 −15 −10 −5 0 5 10 15 Dérivées des quantiles : K1 ( µ = 0, γ = 1, κ = ... ) Logit(Proba) : K1 ( µ = 0, γ = 1, κ = ... ) + Logistique + Gauss (σ = 3.2 ) LogDensités : K1 ( µ = 0, γ = 1, κ = ... ) + Logistique + Gauss (σ = 3.2 ) 200 6.9 κ κ −2 0.6 0.6 1 4.6 1 1.5 1.5 2 2 3.2 2.9 3.2 10 10 −4 Logistique Gauss 100 0.0 κ 0.6 logit(q.999) = 6.9 1 −6 −2.9 logit(q.99) = 4.6 1.5 logit(q.95) = 2.9 2 logit(q.50) = 0 3.2 −4.6 logit(q.05) = −2.9 10 logit(q.01) = −4.6 Logistique logit(q.001) = −6.9 Gauss 0 −6.9 −8 0.0 0.5 1.0 −15 −10 −5 0 5 10 15 −15 −10 −5 0 5 10 15 Figure : Distribution K1 : (a) Quantiles - (b) Cumulative functions (c) Densities (d) Quantile derivatives - (e) Logit of the cumulative functions - (f) Logdensities [email protected] Fat Tail Analysis and Package FatTailsR 9th R/Rmetrics Workshop 27June2015 8 / 26 Figures related to asymmetric distributions K2, K3, K4 Quantiles : K2 ( µ = 0, γ = 1, α = 2, ω = ... ) Quantiles + Probabilités : K2 ( µ = 0, γ = 1, α = 2, ω = ... ) Quantiles + Densités : K2 ( µ = 0, γ = 1, α = 2, ω = ... ) 15 1.0 0.200 ω ω ω 0.6 0.6 0.6 10 1 1 1 1.5 1.5 1.5 2 2 2 3.2 3.2 3.2 5 10 10 0.125 10 0 0.5 −5 −10 −15 0.0 0.000 0.0 0.5 1.0 −15 −10 −5 0 5 10 15 −15 −10 −5 0 5 10 15 Dérivées des quantiles : K2 ( µ = 0, γ = 1, α = 2, ω = ... ) Quantiles + Logit(Probabilités) : K2 ( µ = 0, γ = 1, α = 2, ω = ... ) Quantiles + Log−Densités :

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    26 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us