
<p>REAL-TIME WAVELET COMPRESSION AND SELF-MODELING CURVE <br>RESOLUTION FOR ION MOBILITY SPECTROMETRY </p><p>A dissertation presented to the faculty of the College of Arts and Sciences of Ohio University </p><p>In partial fulfillment of the requirements for the degree <br>Doctor of Philosophy </p><p>Guoxiang Chen March 2003 <br>This dissertation entitled <br>REAL-TIME WAVELET COMPRESSION AND SELF-MODELING CURVE <br>RESOLUTION FOR ION MOBILITY SPECTROMETRY </p><p>BY <br>GUOXIANG CHEN </p><p>has been approved for the Department of Chemistry and Biochemistry and the College of Arts and Sciences by </p><p>Peter de B. Harrington <br>Associate Professor of Chemistry and Biochemistry </p><p>Leslie A. Flemming <br>Dean, College of Arts and Sciences <br>CHEN, GUOXIANG. Ph.D. March 2003. Analytical Chemistry Real-Time Wavelet Compression and Self-Modeling Curve Resolution for Ion Mobility Spectrometry (203 pp.) Director of Dissertation: Peter de B. Harrington <br>Chemometrics has proven useful for solving chemistry problems. Most of the chemometric methods are applied in post-run analyses, for which data are processed after being collected and archived. However, in many applications, real-time processing is required to obtain knowledge underlying complex chemical systems instantly. Moreover, real-time chemometrics can eliminate the storage burden for large amounts of raw data that occurs in post-run analyses. These attributes are important for the construction of portable intelligent instruments. <br>Ion mobility spectrometry (IMS) furnishes inexpensive, sensitive, fast, and portable sensors that afford a wide variety of potential applications. SIMPLe-to-use Interactive Self-modeling Mixture Analysis (SIMPLISMA) is a self-modeling curve resolution method that has been demonstrated as an effective tool for enhancing IMS measurements. However, all of the previously reported studies have applied SIMPLISMA as a post-run tool. <br>A modified SIMPLISMA algorithm, referred to as RTSIMPLISMA, was developed for modeling IMS data in real-time. The real-time algorithm can determine the number of components in the IMS data automatically. Resolved concentration and spectral profiles are simultaneously displayed on a virtual instrument while the data is collected from an ion mobility spectrometer. <br>The computational burden for real-time SIMPLISMA increases when the collected number of spectra grows in size. A spectrum will not be acquired when the data processing consumes too large a share of computer resources. To alleviate this problem, a two-dimensional wavelet compression (WC<sup style="top: -0.46em;">2</sup>) was applied prior to RTSIMPLISMA modeling. The optimal settings of WC<sup style="top: -0.46em;">2</sup>-RTSIMPLISMA for processing IMS data were obtained, by which satisfactory models could be resolved when the data was compressed to 1/256. <br>A novel real-time WC<sup style="top: -0.46em;">2 </sup>has been developed to compress data as it is acquired from <br>IMS sensors. RTSIMPLISMA was applied to the WC<sup style="top: -0.46em;">2 </sup>processed data in real-time, by which the real-time modeling could be significantly accelerated. An integrated software package was developed to implement the real-time WC<sup style="top: -0.46em;">2</sup>-RTSIMPLISMA algorithm and used for the rapid processing of the IMS data of drugs and explosives. The real-time algorithm was able to disclose the very small features in the IMS data and rapidly model the dynamic changes during an IMS measurement course. </p><p>Approved: Peter de B. Harrington <br>Associate Professor of Chemistry and Biochemistry <br>5<br>Acknowledgments <br>I would like to thank my research advisor, Dr. Peter de B. Harrington, for his invaluable support and guidance during my stay at Ohio University. This dissertation could not have been written and the research could not have been accomplished without his help. I would also like to thank my dissertation committee members, Drs. Gary W. Small, Howard D. Dewald, Martin T. Tuck, Wen-jia R. Chen and Xiaozhuo Chen, for their great help in my academic progress and research pursuits. Paul Schmittauer is thanked for his assistances in electronic techniques. <br>I would like to thank the Department of Chemistry and Biochemistry at Ohio <br>University for offering me the opportunity to conduct my doctoral research. The Center for Intelligent Chemical Instrumentation at Ohio University is thanked for supporting the conference trips. Ohio University is thanked for the support of Donald R. Clippinger Fellowship. The US Army ERDEC, GeoCenters, and Ion Track Instruments are thanked for the partial support of this research. Metara Inc. is thanked for supporting me to write this dissertation while working. Dr. Willem Windig at Eigenvector Research Inc. is thanked for his permission for me to use the spectral data files and MATLAB scripts. <br>I would also thank the members in Dr. Harrington’s research group for their helpful suggestions. Special thanks are given to Libo Cao for her consistent help over the years. Dr. Tricia L. Buxton Derringer is also thanked for the bacterial data set. <br>I would like thank Zhuo Chen for her love, encouragement, and valuable support. <br>I would like to thank my father and the other family members who are always caring and supportive in my life. <br>6<br>Table of Contents </p><p>Page <br>Abstract...............................................................................................................................3 Acknowledgments...............................................................................................................5 List of Tables ......................................................................................................................9 List of Figures...................................................................................................................10 List of Abbreviations ........................................................................................................18 </p><p>Chapter 1 <br>1.1 <br>Introduction............................................................................................... 21 General Statement..................................................................................... 21 Ion Mobility Spectrometry........................................................................ 23 Self-Modeling Curve Resolution.............................................................. 26 Data Compression..................................................................................... 29 The Research Objectives........................................................................... 32 <br>1.2 1.3 1.4 1.5 </p><p></p><ul style="display: flex;"><li style="flex:1">Chapter 2 </li><li style="flex:1">SIMPLISMA and Wavelet Transform...................................................... 34 </li></ul><p>SIMPLISMA............................................................................................. 34 Wavelet Transform ................................................................................... 48 <br>2.1 2.2 </p><p>Chapter 3 <br>3.1 <br>Real-Time Self-Modeling Mixture Analysis ............................................ 59 Introduction............................................................................................... 59 <br>7<br>3.2 </p><p>3.3 3.4 3.5 <br>Theory....................................................................................................... 61 Experimental Section................................................................................ 63 Results and Discussion ............................................................................. 67 Conclusions............................................................................................... 86 </p><p></p><ul style="display: flex;"><li style="flex:1">Chapter 4 </li><li style="flex:1">RTSIMPLISMA Applied to Two-Dimensional Wavelet Compressed Ion </li></ul><p>Mobility Data........................................................................................................ 87 </p><p>4.1 4.2 4.3 4.4 <br>Introduction............................................................................................... 87 Theory....................................................................................................... 91 Experimental Section................................................................................ 94 Results and Discussion ............................................................................. 97 <br>4.4.1 Conventional SIMPLISMA Models...................................................97 </p><ul style="display: flex;"><li style="flex:1">4.4.2 Optimization of WC<sup style="top: -0.46em;">2</sup>-RTSIMPLISMA </li><li style="flex:1">103 </li></ul><p></p><ul style="display: flex;"><li style="flex:1">117 </li><li style="flex:1">4.4.3 RTSIMPLISMA Applied to Windig Standard Data Sets </li></ul><p></p><ul style="display: flex;"><li style="flex:1">4.5 </li><li style="flex:1">Conclusions............................................................................................. 137 </li></ul><p></p><ul style="display: flex;"><li style="flex:1">Real-Time Two-Dimensional Wavelet Compression and Its Application to </li><li style="flex:1">Chapter 5 </li></ul><p>Real-Time Self-Modeling of IMS data............................................................... 143 </p><p>5.1 5.2 5.3 <br>Introduction............................................................................................. 143 Theory..................................................................................................... 144 Experimental Section.............................................................................. 148 <br>8<br>Results and Discussion ........................................................................... 151 <br>5.4.1 Time Performance of Real-Time WC<sup style="top: -0.46em;">2</sup>-RTSIMPLISMA.................151 5.4.2 Enhanced IMS Measurement by Real-Time WC<sup style="top: -0.46em;">2</sup>-RTSIMPLISMA156 5.4.3 Real-Time Self-Modeling of IMS Data of Explosives.....................164 5.4.4 Internal Reference Method for Real-Time WC<sup style="top: -0.46em;">2</sup>-RTSIMPLISMA...172 <br>5.4 </p><ul style="display: flex;"><li style="flex:1">5.5 </li><li style="flex:1">Conclusions............................................................................................. 186 </li></ul><p>Summary and Future Work..................................................................... 187 ................................................................................................................. 191 <br>Chapter 6 References Appendix A: Publications.............................................................................................. 200 Appendix B: Presentations............................................................................................. 201 Appendix C: MATLAB Scripts..................................................................................... 202 <br>9<br>List of Tables </p><p></p><ul style="display: flex;"><li style="flex:1">Table </li><li style="flex:1">Page </li></ul><p><strong>Table 2.1 </strong>The concentrations of the compounds A and B during the reaction course..... 41 <strong>Table 3.1 </strong>Time performances of different methods and batch number <em>R </em>for processing <br>550 spectra. ............................................................................................................... 85 <br><strong>Table 4.1 </strong>Contribution of wavelet type and compression level to the variation of <br>RRMSES and RRMSEC......................................................................................... 111 <br><strong>Table 4.2 </strong>Compression levels, compression factor (C.F.), percent correct<em>n</em><sub style="top: 0.26em;"><em>c </em></sub>, average <br>RRMSES, minimum RRMSES, and the corresponding wavelet type for different compression levels for drug data set....................................................................... 112 <br><strong>Table 4.3 </strong>Compression levels, percent correct<em>n</em><sub style="top: 0.26em;"><em>c </em></sub>, average RRMSES, minimum RRMSES, and the corresponding wavelet type for different compression levels for bacterial data set. ................................................................................................................... 113 <br><strong>Table 5.1 </strong>Experimental setup for the data sets in Section 5.4.4. In the table, <em>t</em><sub style="top: 0.26em;"><em>i </em></sub>is the time when the sample was inserted into the desorber; is the time when the </p><p><em>t</em><sub style="top: 0.26em;"><em>s </em></sub></p><p></p><ul style="display: flex;"><li style="flex:1">measurement stopped; </li><li style="flex:1">is the total number spectra collected. Sample volume was </li></ul><p></p><p><em>n</em><sub style="top: 0.26em;"><em>s </em></sub></p><p>1 µL and the sample disk was removed at 5 s after it was inserted........................ 175 <br>10 <br>List of Figures </p><p></p><ul style="display: flex;"><li style="flex:1">Figure </li><li style="flex:1">Page </li></ul><p><strong>Figure 1.1 </strong>The schematic diagram of an ion mobility spectrometer. .............................. 24 <strong>Figure 2.1 </strong>The virtual spectra of 1 mM aqueous solution of the pure compound A (Panel <br>A) and 1 mM aqueous solution of the pure compound B (Panel B)......................... 42 <br><strong>Figure 2.2 </strong>The three-dimensional surface plot of the synthesized mixture spectra of the two-component virtual reaction system.................................................................... 43 <br><strong>Figure 2.3 </strong>SIMPLISMA resolved spectra of compounds A (Panel A) and B (Panel B) with the number of components being predefined to two (α=0.05)......................... 45 <br><strong>Figure 2.4 </strong>SIMPLISMA resolved concentration profiles of compounds A (Panel A) and <br>B (Panel B) with the number of components being predefined to two (α=0.05). .... 46 <br><strong>Figure 2.5 </strong>SIMPLISMA model of the synthesized data set with the number of components being predefined to three (α=0.05)....................................................... 47 <br><strong>Figure 2.6 </strong>Schematic of multi-level operations of the pyramid WT algorithm with dyadic sampling.................................................................................................................... 50 <br><strong>Figure 2.7 </strong>Father and mother wavelets of daublet 4 (Panel A, four coefficients), daublet <br>14 (Panel B, 14 coefficients), coiflet 3 (Panel C, 18 coefficients), and symmlet 6 (Panel D, 12 coefficients). ........................................................................................ 52 <br><strong>Figure 2.8 </strong>Illustration of the multi-level operations of the pyramid algorithm for forward <br>WT using daublet 14................................................................................................. 55 <br>11 <br><strong>Figure 2.9 </strong>The enlarged view of the smooth and detail parts of WT spectrum at level 5 in <br>Figure 2.8.................................................................................................................. 56 <br><strong>Figure 2.10 </strong>Reconstructed spectra from the smooth parts of forward WT with level 1 to 5 corresponding to Figure 2.8...................................................................................... 58 <br><strong>Figure 3.1 </strong>Structures for (A) diisopropyl methanephosphonate (DIMP), and (B) <br>Pinacolyl methyl phosphonofluoridate (soman)....................................................... 64 <br><strong>Figure 3.2 </strong>The graphical user interface for real-time SIMPLISMA................................ 66 <strong>Figure 3.3 </strong>The 3D surface plot of the IMS data of ethanol. ............................................ 68 <strong>Figure 3.4 </strong>RTSIMPLISMA resolved concentration profiles (Panel A) and component spectra (Panel B) for ethanol data............................................................................. 69 <br><strong>Figure 3.5 </strong>The 3D surface plot of the IMS data of DIMP. The data set was acquired from the CAM at positive mode........................................................................................ 70 <br><strong>Figure 3.6 </strong>RTSIMPLISMA resolved concentration profiles (Panel A) and component spectra (Panel B) for DIMP data............................................................................... 72 <br><strong>Figure 3.7 </strong>SIMPLISMA-det resolved concentration profiles (Panel A) and component spectra (Panel B) for DIMP data............................................................................... 73 <br><strong>Figure 3.8 </strong>RTSIMPLISMA model after processing 25 spectra for DIMP data. Panel A presents the concentration profiles and Panel B presents the component spectra.... 75 <br><strong>Figure 3.9 </strong>RTSIMPLISMA model after processing 40 spectra for DIMP data.. ............ 76 <strong>Figure 3.10 </strong>RTSIMPLISMA model after processing 135 spectra for DIMP data. ......... 77 <strong>Figure 3.11 </strong>RTSIMPLISMA resolved model for DIMP data with NPV threshold β<sub style="top: 0.26em;">0 </sub>= </p><p>0.008.......................................................................................................................... 78 <br>12 <br><strong>Figure 3.12 </strong>RTSIMPLISMA model for DIMP data with NPV threshold β<sub style="top: 0.26em;">0 </sub>= 0.04....... 79 </p><p><strong>Figure 3.13 </strong>RTSIMPLISMA model for DIMP data with NPV threshold β<sub style="top: 0.26em;">0 </sub>= 0.24....... 80 <strong>Figure 3.14 </strong>Comparison of time performance for real-time implementation of <br>SIMPLISMA-det, RTSIMPLISMA, and data acquisition only................................ 82 <br><strong>Figure 3.15 </strong>Effects on time performance by real-time implementation of <br>RTSIMPLISMA for batches of <em>R </em>spectra................................................................. 84 <br><strong>Figure 4.1 </strong>Structures for (A) cocaine, and (B) heroin. ................................................... 90 <strong>Figure 4.2 </strong>Schematic diagram of the implementation principle of the WC<sup style="top: -0.46em;">2</sup>- <br>RTSIMPLISMA algorithm....................................................................................... 92 <br><strong>Figure 4.3 </strong>The cocaine-heroin data set comprised 1024 spectra on a 3D surface plot <br>(Acquired from ITEMISER<sup style="top: -0.46em;">® </sup>ITMS in positive mode)............................................. 98 <br><strong>Figure 4.4 </strong>The TMAH-preprocessed <em>Bacillus cereus </em>data set comprised 1024 spectra on a 3D surface plot (Acquired from Barringer IONSCAN<sup style="top: -0.46em;"> </sup>350 spectrometer in positive mode)........................................................................................................... 99 <br><strong>Figure 4.5 </strong>Conventional SIMPLISMA model from the original cocaine-heroin data set <br>(three-component model). (A) Concentration profiles. (B) Component spectra.... 101 <br><strong>Figure 4.6 </strong>Conventional SIMPLISMA model from the <em>Bacillus cereus </em>data set (fourcomponent model). (A) Concentration profiles. (B) Component spectra............... 102 <br><strong>Figure 4.7 </strong>Relative purity curves of determinant-based SIMPLISMA for the drug and bacterial data sets.................................................................................................... 104 <br><strong>Figure 4.8 </strong>Relative purity curves of Gram-Schmidt-based SIMPLISMA for the drug data set............................................................................................................................ 105 <br>13 <br><strong>Figure 4.9 </strong>Relative purity curves of Gram-Schmidt-based SIMPLISMA for the bacterial data set. ................................................................................................................... 106 <br><strong>Figure 4.10 </strong>Percent correct number of components with respect to the threshold ∆<sub style="top: 0.26em;">0 </sub>.. 108 </p><p><strong>Figure 4.11 </strong>The 4 × 4 daublet 14-daublet 4 compressed <em>Bacillus cereus </em>dataset comprised of 32 × 64 points in a 3D surface plot................................................... 116 <br><strong>Figure 4.12 </strong>Reconstructed RTSIMPLISMA model from the 4 × 4 daublet 14-daublet 4 compressed drug data set. (A) Concentration profiles. (B) Component spectra. ... 118 <br><strong>Figure 4.13 </strong>Reconstructed RTSIMPLISMA model from the 4 × 4 daublet 14-daublet 4 compressed bacterial data set. (A) Concentration profiles. (B) Component spectra. ................................................................................................................................. 119 <br><strong>Figure 4.14 </strong>The reconstructed data set from the 4 × 4 daublet 14-daublet 4 WC<sup style="top: -0.46em;">2</sup>- <br>RTSIMPLISMA model from the bacterial data set................................................ 120 <br><strong>Figure 4.15 </strong>RTSIMPLISMA relative purity curve for the Windig Raman data set. The transition point is highlighted. ................................................................................ 122 <br><strong>Figure 4.16 </strong>RTSIMPLISMA resolved spectra for the Windig Raman data set. ........... 124 <strong>Figure 4.17 </strong>Conventional SIMPLISMA (Panel A) and RTSIMPLISMA (Panel B) resolved concentration profiles for the Windig Raman data set............................. 125 <br><strong>Figure 4.18 </strong>Conventional SIMPLISMA resolved spectra for the Windig Raman data set <br>(α = 0.03)................................................................................................................ 126 <br><strong>Figure 4.19 </strong>RTSIMPLISMA relative purity curve for the Windig FTIR microscopy data set............................................................................................................................ 127 <br>14 <br><strong>Figure 4.20 </strong>RTSIMPLISMA resolved spectra for the Windig FTIR microscopy data set. <br>................................................................................................................................. 129 <br><strong>Figure 4.21 </strong>Conventional SIMPLISMA (Panel A) and RTSIMPLISMA (Panel B) resolved concentration profiles for the Windig FTIR microscopy data set............ 130 <br><strong>Figure 4.22 </strong>Conventional SIMPLISMA resolved spectra for the Windig FTIR microscopy data set (α = 0.03). .............................................................................. 131 <br><strong>Figure 4.23 </strong>RTSIMPLISMA relative purity curve for the Windig NIR data set. ......... 132 <strong>Figure 4.24 </strong>Resolved spectra for the Windig NIR data set with conventional <br>SIMPLISMA applied on the positive part of the inverted second derivative data set (α = 0.1).................................................................................................................. 133 <br><strong>Figure 4.25 </strong>RTSIMPLISMA resolved spectra for the Windig NIR data set................. 135 <strong>Figure 4.26 </strong>RTSIMPLISMA relative purity curve for the Windig time resolved mass spectrometry data set............................................................................................... 136 <br><strong>Figure 4.27 </strong>Reference spectra for the three photographic color coupling compounds in the Windig time resolved mass spectrometry data set............................................ 138 <br><strong>Figure 4.28 </strong>TSIMPLISMA resolved spectra for the Windig time resolved mass spectrometry data set (α = 0.03)............................................................................. 139 <br><strong>Figure 4.29 </strong>RTSIMPLISMA resolved spectra for the Windig time resolved mass spectrometry data set............................................................................................... 140 <br><strong>Figure 4.30 </strong>TSIMPLISMA (Panel A) and RTSIMPLISMA (Panel B) resolved concentration profiles for the Windig time resolved mass spectrometry data set. . 141 <br>15 <br><strong>Figure 5.1 </strong>Circular buffer. As a new point is received, it is placed into the memory pointed by pointer <em>P</em><sub style="top: 0.125em;"><em>n</em></sub>. The start position of the data to be processed is located by <em>P</em><sub style="top: 0.125em;"><em>p</em>. </sub>................................................................................................................................. 147 <br><strong>Figure 5.2 </strong>Structures for (A) urea nitrate, (B) cyclotrimethylenetrinitramine (RDX), (C) <br>2,4,6-trinitrotoluene (TNT), and (D) 3,4 methylenedioxymethamphetamine (MDMA) ................................................................................................................................. 150 <br><strong>Figure 5.3 </strong>The vector <strong>φ</strong><sup style="top: -0.45em;">(4) </sup>that defines the FIR filter for column compression............ 153 <strong>Figure 5.4 </strong>The time performance curve for RTSIMPLISMA without compression..... 154 <strong>Figure 5.5 </strong>The time performance curves for data acquisition only and real-time WC<sup style="top: -0.46em;">2</sup>- <br>RTSIMPLISMA...................................................................................................... 155 <br><strong>Figure 5.6 </strong>IMS data set of blank trap disk on 3D surface plot. ..................................... 157 <strong>Figure 5.7 </strong>The average IMS spectra for three replicates of IMS measurement of a blank trap disk and the average spectrum of the data set that only has RIP..................... 158 <br><strong>Figure 5.8 </strong>Real-time WC<sup style="top: -0.46em;">2</sup>-RTSIMPLISMA resolved spectra for the data sets from the three replicates of blank trap disk experiments....................................................... 160 <br><strong>Figure 5.9 </strong>The variation profiles corresponding to different drift time for the raw data set of blank 3 in Figure 5.7........................................................................................... 161 <br><strong>Figure 5.10 </strong>IMS data set of 3.6×10<sup style="top: -0.46em;">1 </sup>pg TNT on 3D surface plot.................................. 162 <strong>Figure 5.11 </strong>The average IMS spectra for two replicates of IMS measurement of 3.6×10<sup style="top: -0.46em;">1 </sup>pg TNT and the average spectrum of the data set that only has RIP...................... 163 <br><strong>Figure 5.12 </strong>Real-time WC<sup style="top: -0.46em;">2</sup>-RTSIMPLISMA resolved spectra for the data sets from the two replicate data set of 36 pg TNT........................................................................ 165 <br>16 <br><strong>Figure 5.13 </strong>IMS data set of explosives (urea nitrate, RDX, and TNT) on a 3D surface plot. ......................................................................................................................... 166 <br><strong>Figure 5.14 </strong>Real-time WC<sup style="top: -0.46em;">2</sup>-RTSIMPLISMA resolved concentration profiles at the final point (258.3 s)......................................................................................................... 168 <br><strong>Figure 5.15 </strong>Real-time WC<sup style="top: -0.46em;">2</sup>-RTSIMPLISMA resolved component spectra at different acquisition time (Part I). ......................................................................................... 169 <br><strong>Figure 5.16 </strong>Real-time WC<sup style="top: -0.46em;">2</sup>-RTSIMPLISMA resolved component spectra at different acquisition time (Part II). (177.1 - 249.0 s)............................................................. 170 <br><strong>Figure 5.17 </strong>Real-time WC<sup style="top: -0.46em;">2</sup>-RTSIMPLISMA resolved component spectra at different acquisition time (Part III). (249.1 - 258.3 s) ........................................................... 171 <br><strong>Figure 5.18 </strong>SIMPLISMA-det resolved concentration profiles from the raw IMS data of explosives................................................................................................................ 173 <br><strong>Figure 5.19 </strong>SIMPLISMA-det resolved component spectra from the raw IMS data set of explosives................................................................................................................ 174 <br><strong>Figure 5.20 </strong>Ion mobility spectra of 1µL ethanol solution with 1.0 × 10<sup style="top: -0.46em;">2 </sup>ng MDMA, 1.0 <br>× 10<sup style="top: -0.46em;">2 </sup>ng cocaine, and 2.0 × 10<sup style="top: -0.46em;">2 </sup>ng heroin, respectively, collected on the ITEMISER<sup style="top: -0.46em;"> </sup>ITMS in positive ion mode................................................................ 176 <br><strong>Figure 5.21 </strong>Real-time WC<sup style="top: -0.46em;">2</sup>-RTSIMPLISMA resolved component spectra from the data set of drug mixture A.............................................................................................. 178 <br><strong>Figure 5.22 </strong>Real-time WC<sup style="top: -0.46em;">2</sup>-RTSIMPLISMA resolved component spectra for drug mixture A with internal reference spectra of cocaine, MDMA, and heroin. .......... 179 <br>17 <br><strong>Figure 5.23 </strong>Real-time WC<sup style="top: -0.46em;">2</sup>-RTSIMPLISMA resolved concentration profiles for drug mixture A with internal reference spectra of cocaine, MDMA, and heroin. .......... 181 <br><strong>Figure 5.24 </strong>Real-time WC<sup style="top: -0.46em;">2</sup>-RTSIMPLISMA resolved component spectra for drug mixture B. ............................................................................................................... 183 <br><strong>Figure 5.25 </strong>Real-time WC<sup style="top: -0.46em;">2</sup>-RTSIMPLISMA resolved component spectra for drug mixture B with appended IMS reference spectra of cocaine, MDMA, and heroin.184 <br><strong>Figure 5.26 </strong>Real-time WC<sup style="top: -0.46em;">2</sup>-RTSIMPLISMA resolved concentration profiles for drug mixture B with appended reference IMS spectra of cocaine, MDMA, and heroin. 185 <br>18 <br>List of Abbreviations </p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages203 Page
-
File Size-