Fu nga I Biotechno Iogy in Agricultural, Food, and Environmental Ap pI ications edited by Ddip K. Arora National Bureau of Agriculturally Important Microorganisms New Delhi, lndiu Associate Editors Paul D. Bridge British Antarctic Survey Cambridge, United Kingdom Deepak Bhatnagar US.Department of Agriculture New Orleans, Louisiana, U.S.A. MARCEL MARCELDEKKER, INC. NEWYORK - BASEL mDEKKER Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved. Although great care has been taken to provide accurate and current information, neither the author(s) nor the publisher, nor anyone else associated with this publication, shall be liable for any loss, damage, or liability directly or indirectly caused or alleged to be caused by this book. The material contained herein is not intended to provide specific advice or recommendations for any specific situation. Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging-in-Publication Data A catalog record for this book is available from the Library of Congress. ISBN: 0-8247-4770-4 This book is printed on acid-free paper. Headquarters Marcel Dekker, Inc., 270 Madison Avenue, New York, NY 10016, U.S.A. tel: 212-696-9000; fax: 212-685-4540 Distribution and Customer Service Marcel Dekker, Inc., Cimarron Road, Monticello, New York 12701, U.S.A. tel: 800-228-1160; fax: 845-796-1772 Eastern Hemisphere Distribution Marcel Dekker AG, Hutgasse 4, Postfach 812, CH-4001 Basel, Switzerland tel: 41-61-260-6300; fax: 41-61-260-6333 World Wide Web http://www.dekker.com The publisher offers discounts on this book when ordered in bulk quantities. For more information, write to Special Sales/Professional Marketing at the headquarters address above. Copyright q 2004 by Marcel Dekker, Inc. All Rights Reserved. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage and retrieval system, without permission in writing from the publisher. Current printing (last digit): 10987654321 PRINTED IN THE UNITED STATES OF AMERICA Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved. MYCOLOGY SERIES Editor J. W. Bennett Professor Department of Cell and Molecular Biology Tulane University New Orleans, Louisiana Founding Editor Paul A. Lemke 1. Viruses and Plasmids in Fungi, edited by Paul A. Lemke 2. The Fungal Community: Its Organization and Role in the Ecosystem, edited by Donald T. Wicklow and George C. Carroll 3. Fungi Pathogenic for Humans and Animals (in three parts), edited by Dexter H. Howard 4. Fungal Differentiation:A Contemporary Synthesis, edited by John E. Smith 5. Secondary Metabolism and Differentiation in Fungi, edited by Joan W. Bennett and Alex Ciegler 6. Fungal Protoplasts, edited by John F. Peberdy and Lajos Ferenczy 7. Viruses of Fungi and Simple Eukaryotes, edited by Yigal Koltin and Michael J. Leibowitz 8. Molecular lndustrial Mycology: Systems and Applications for Filamentous Fungi, edited by Sally A. Leong and Randy M. Berka 9. The Fungal Community; Its Organization and Role in the Ecosystem, Second Edition, edited by George C. Carroll and Donald T. Wicklow 10. Stress Tolerance of Fungi, edited by D. H. Jennings 11. Metal lons in Fungi, edited by Gunther Winkelmann and Dennis R. Winge 12. Anaerobic Fungi: Biology, Ecology, and Function, edited by Douglas 0. Mountfort and Colin G. Orpin 13. Fungal Genetics: Principles and Practice, edited by Cees J. Bos 14. Fungal Pathogenesis: Principles and Clinical Applications, edited by Riclhard A. Calderone and Ronald L. Cihlar 15. Molecular Biology of Fungal Development, edited by Heinz D. Osiewacz 16. Pathogenic Fungi in Humans and Animals: Second Edition, edited by Dexter H. Howard 17. Fungi in Ecosystem Processes, John Dighton 18. Genomics ofPlants and Fungi, edited by Rolf A. Prade and Hans J. Bohriert I9. Clavicipitalean Fungi: Evolutionary Biology, Chemistry, Biocontrol, and Cultural Impacts, edited by James F. White Jr., Charles W. Bacon, Nigel L. Hywel-Jones, and Joseph W. Spatafora 20. Handbook of Fungal Biotechnology, Second Edition, edited by Dilip K. Arora 21 . Fungal Biotechnology in Agricultural, Food, and EnvironmentalApplications, edited by Dilip K. Arora Additional Volumes in Preparation Handbook of Industrial Mycology, edited by Zhiqiang An Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved. Preface The study of fungal biotechnology is proceeding at an unprecedented rate with an array of new tools to generate a wealth of disciplines and subdisciplines. By means of modern biotechnology, fungi have justified their practical application to varied domains of human enterprise, and thus promise considerable potential in the agricultural, food, and environmental spheres. The successful application of fungal biotechnological processes in these areas requires the integration of a number of scientific disciplines and technologies. These may include subjects as diverse as agronomy, chemistry, genetic manipulation, and process engineering. The practical use of newer techniques such as genetic recombination, bioinformatics, and robotics has revolutionized modern biotechnology-based agri-food industries, and created the enormous range of possible applications of fungi. Tremendous biodiversity of agriculturally important fungi exists—the benefit of which is not fully harnessed. The level of technology required to take full advantage may range from the simple introduction of a single fungus in biocontrol processes to the extensive manipulation of the organism that facilitates overproduction of a particular enzyme or metabolite. In modern agri-industry, fungi offer many established beneficial roles, particularly as biofertilizers, mycorrhizae, and biocontrol agents of pathogens, pests, and weeds. As pathogens, fungi represent a heavy negative impact on human health, agriculture, and environment. In agriculture, annual crop losses by phytopathogenic fungi in the field and also during post- harvest exceed 200 billion Euros, and in the United States alone, over $600 million are spent annually on agricultural fungicides. The balance of beneficial and detrimental effects is reflected in many other areas of agriculture and horticulture. Fungi that inhabit tropical or temperate soils, as mycorrhiza, endophytes, phytopathogens, entomopathogens, or simple saprophytes, are significant resources in transformation of biological matter, and they offer many bioproducts including secondary metabolites, antibiotics, and catabolic enzymes of enormous potential. The world has won a crucial battle in the area of food security, but the war is still on. A total of 800 million people—that is, one of every six persons in the developing world—do not have access to food. One-third of all pre–school-age children in the developing countries face food insecurity. In the food and feed arena, fungi are historically important as mushrooms and fermented foods and in baking and brewing. Such roles are supplemented by the provision of fungi to offer food processing enzymes and additives, and more recently the development of protein-based foodstuffs from filamentous fungi. On the detrimental side, fungi cause extensive spoilage of stored and processed foodstuff. Through direct pathogenesis and biodeterioration of foods and other agricultural commodities, fungi cause considerable economic consequences as well. In these cases, techniques developed from biochemistry and molecular biology can be deployed to analyze the relevant processes, and to evolve tools for the detection, characterization, and tracking of the organisms involved. Although such endeavors may seem rather far removed from the traditional definition of fungal biotechnology, the information derived can be pivotal in understanding the underlying intricate processes, and arriving at suitable control measures. The utilization of fungi in the environment is a more recent development, and can have particular association with both food and agriculture, with fungal remediation of land having implications for biofertilizers, mycorrhizae, and food crop Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved. development, among many other considerations. The degradative activities of fungi have also been harnessed in programs related to bioremediation of contaminated land, treatment of industrial wastes, and biotransformation of specific compounds. Many of the applications of fungal biotechnology in these areas rely not on identifying new activities but in harnessing and expanding roles that the fungi undertake normally in the environment. Several books on the role of fungi in agricultural, food, and environmental applications have appeared since the 1990s. However, subjects relating to these areas are so broad that no single book can provide all the available information. Consequently, this book complements the others by providing valuable information that is not available elsewhere. The book encompasses a broad range of information on biotechnological potential of entomopathogenic fungi, ergot alkaloids, fungi in disease control, the development of mycoherbicides, control of nematodes, control of plant disease, strategies for controlling vegetable and fruit crops, mycotoxigenic fungi, development of biofungicides, production of edible fungi, fermented foods, and high-value products such as mycoprotein, yeasts in the wine industry, the role of fungi in
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages475 Page
-
File Size-