Time Evolution and Quantum Dynamics

Time Evolution and Quantum Dynamics

Time_evolution.nb:9/26/04::22:57:04 1 Timeevolutionandquantumdynamics Sakurai 2.1, 2.2 , Merzbacher 14, BJ 5.7, 5.8 ü Timeevolutionoperator&theHamiltonian ü Basisketsandevolvingstates Startbydefiningabasis i whichspansthevectorspaceofpossiblestates.Thesecouldbeeignstatesofsome operator,sayA.ItisoftenusefultoconsidereigenstatesoftheHamiltonian ? H .Thesestatesarestatic.Ifdefinedin termsofanoperator,andtheoperatorisafunctionoftime,thenthedefinitionofthebasisshouldspecifythetime,in whichcasewemaywrite i t .Thisdoesnotimplytimeevolution,itisjustalabelforwhichsetofstatesweare usingasabasis.Forthemomentwewillconsiderabasisthatdoesnotchangewithtim + /? e. Wehavepostulatedthatthestateofthesystemcanbeexpressedasalinearcombinationofthebasiskets. a = cai i ? ? Now, ingeneral,thestatewillevolveintime,sowewrite a, t = cai t i ? + / ? Note thatthetimedependenceisallinthecai t .Thisisthesocalled"Schroedinger"picture. + / ü U+t, t0/ Definethetimeevolutionoperator U t, t0 a, t0 = a0, t + / ? ? Thesubscript0 isintendedtodenotethatthesystemwasinthestate a attimet0 ,andthenevolvedtot.Thisis generallynotthesameasasystemwhichisinstate a attimet. ? ? WedesireafewpropertiesoftheoperatorU † +Unitary:If a, t0 a, t0 = 1,then a, t a, t = a, t0 U t, t0 U t, t0 a, t0 = 1,i.e,wewantU tobeunitary. 2 Note: thisimplies; S« cai t? = 1forall; t. « ? ; + / + / ? i + / +Lawofcomposition:U t2, t0 = U t2, t1 U t1, t0 ,fort2 > t1 > t0 .Thiscompositionlawisassociative U t3, t2 U t2, t1 U t1, t0+ = U/ t3, t2+ U /t2, t+1 U /t1, t0 + + / + // + / + / + + / + // +Identity:U t1, t1 = 1. + / -1 † +IfweaddInverse:U t, t0 = U t, t0 ,thenthetimeevolutionoperationsformagroup.Wewilldiscusssymmetry groupslateroninconnectionwithspatialtranslationsandrotations.+ / + / Time_evolution.nb:9/26/04::22:57:04 2 Unitaritysuggeststheexpansionforinfinitesimaltimetranslations U t0 + dt, t0 = 1 - i W dt. + / TheHermitianoperatorWisthegeneratoroftimetranslations.Theexplicitfactorofiisrequiredtomakethe infiinitesimaltranslationUnitary,i.e.itisrequiredtohaveU -1 = U † = 1 + i W dt,sothattofirstorder U † U = 1 + i W dt 1 - i W dt = 1 + $ dt2 + / + / + / Whasdimensionsoffrequency.TheHamiltonianisdefinedbyH = Wandhasdimensionsofenergy,butisotherwise just thegeneratoroftimetranslations. ü Schroedingerequations TheSchroedingerequationisadifferentialequationwhichdescribesthetimeevolutionofaquantumsystem.Themost basicversiondescribesthetimeevolutionofthetimeevolutionoperatoritself.Ifthisisknown,itmaybeappliedto determinetheevolutionofthesysteminanystate. H ConsiderU t + dt, t0 = U t + dt, t U t, t0 = 1 - i ÅÅÅÅÅÅ dt U t, t0 .Forsmalldt + / + / + / + / + / U+t+dt,t0/-U+t,t0/ ∑ HU t, t0 = i ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅdt = i ÅÅÅÅÅÅ∑t U t, t0 + / + / ü Fora? Alternatively,onecanderiveanequationforthestatevectordirectly. ∑ ∑ HU t, t0 a, t0 = i ÅÅÅÅ∑tÅÅ U t, t0 a, t0 orH a, t = i ÅÅÅÅ∑tÅÅ a0, t .Notethedifferencebetweenthestaticstate a, t0 andtheevolvingstate+ / ? a0, t+ . / ? ? ? ? ? ü Basiccase,H isconstant(noexplicittimedependence) OnecansolvethedifferentialequationwithboundaryconditionU t0, t0 = 1. + / - ÅÅiÅÅ H t-t U t, t0 = e + 0/ + / Onemayalsoconsiderthelimitofmanyshortevolutionsteps. n i i Dt - ÅÅÅÅ H+t-t0/ U t, t0 = Lim 1 - ÅÅÅÅ H ÅÅÅÅÅÅÅ = e nض n + / + / Alternatively,considerasingleenergyeigenstate a, t = ci t i ? + / ? ∑ i ÅÅÅÅ∑tÅÅ ci t i = H ci t i = Ei ci t i or,since i isjustconstantandnotchangingwithtime,wehave + / ? + / ? + / ? ? -i w t-t ci t = e i+ 0/ ci t0 withwi = Ei + / + / s Andforamoregeneralstateuse Time_evolution.nb:9/26/04::22:57:04 3 i i i e- ÅÅÅÅ H t 1 = S e- ÅÅÅÅ Ht i? ;i = S i? e- ÅÅÅÅ Ei t ;i i i orforastate a0, t = S ca j t j? j ? + / -i w t -i w t a0, t = U t, t0 a, t0? = S ca j t0 S i? e i i j = S cai t0 e i i? j i i ? + / + / ; « ? + / ü Eigenvectorsarefixed,butenergiesvarywithtime b)H varieswithtime,but H t1 , H t2 = 0.Thiscorrespondstothecasewheretheeigenvectorsremainthesame,but 1 theenergyeigenvalueschangewithtime.Anexampleofthiswouldbeaspin# + / + /' ÅÅ2ÅÅ particlepropagatingthroughamagnetic fieldwhereBchangesinmagnitude,butnotdirection. ¹¶ - ÅÅÅÅi t H t' dt' ¼t + / U t, t0 = e 0 + / andsimilarlyforci . ü Eigenvectorsarechangingintime 1 c) H t1 , H t2 ∫ 0Thiscaseisnon-trivial.Anexamplewouldbethes = ÅÅÅÅ casejustmentioned,butwhereB 2 ¹¶ changesdirection.Aformalsolutionis(seeSakurai)# + / + /' -i n t t1 tn-1 U t, t0 = 1 + S ÅÅÅÅÅÅÅ dt1 dt2 ... dtn H t1 H t2 ... H tn n t0 t0 t0 + / + / ¼ ¼ ¼ + / + / + / Thisseriesisrelatedtoformalperturbationtheory. ü TransitionAmplitudes Timeevolutioncanbeconsideredasa"transitionamplitude".Att0 thesystemstartsinstate a .Attimet,systemhas evolvedto a0, t = U t, t0 a, t0 .Then,theamplitudetobeinastate b attimetisgivenby ? ? + / ? ? Aab t = b, t a0, t = b, t U t, t0 a, t0 . + / ; « ? ; « + / « ? Theprobabilityforasysteminitiallyinstate a toevolvetostate b isjustthesquareofthisamplitude. ? ? 2 Pab t = Aab t + / + / Note thattheinnerproductisonlydefinedatequaltimes- b, t a, t0 isnotdefined.Tocomparetwostatesfrom differenttimes,onemusttimeevolveoneofthestatestothetimeoftheother.; « ? ü Examplefortwostatesystem Consideratwostatesystemwhich,att = 0,isinthestate a ª a, 0 = c1 1 + c2 2 . ? ? ? ? where 1 and 2 areenergyeigenstates.Then,atsomelatertimet,thesystemwillevolveto ? ? Time_evolution.nb:9/26/04::22:57:04 4 -iw t -iw t a0, t = c1 e 1 1 + c2 e 1 2 ? ? ? Theamplitudeforthestatetostillbeinstate a attimetis ? Aaa t = a U t, 0 a * * -iw1 t -iw1 t + / =; «1 c+1 + /2« c?2 c1 e 1 + c2 e 2 2 -iw t 2 -iw t = +c;1 e 1; + c/2+ e 2 ? ?/ Theprobabilitytoremaininstate a is ? 2 Paa t = Aaa t 4 4 2 2 + / = c1 + /+ c2 + 2 c1 c2 cos wt + / wheretheoscillationfrequencyisw = w1 - w2 . Herearethreeoscillationplots.Notethefullymixedcaseinblack.Thesmallmixingcaseinred.Thebluecurvehas intermediateamountofmixing,andissettooscillateattwicethefrequency.Thisisadescriptionofneutrinooscillation withtwoflavors.Startoutinstateof ne andoscillateintoanother"flavor".Adetectoratdifferentdistancesfromthe sourcewillmeasuredifferentfluxesof n? e . ? paa #c1_, c2_, w_, t_ ' : Abs #c1 '^4 Г Abs #c2 '^4 Г 2 Abs #c1 '^2 Abs #c2 '^2 Cos #w t'; Plot #paa #Sqrt #.5 ', Sqrt #.5 ', 1, t', paa #Sqrt #.01 ', Sqrt #.99 ', 1, t', paa #Sqrt #.2 ', Sqrt #.8 ', 2, t', t, 0, 10 '; 1 0.8 0.6 0.4 0.2 0 0 2 4 6 8 10 Youmaywishtoconsiderthedifferencebetween"appearance"and"disappearance"experiments,especiallyinthecase wherewt + 1. ü commentoncorrelationamplitude ü Evolutionofexpectationvalues&Conservedquantities ü expectationvalues ConsidertheevolutionoftheexpectationvalueforanoperatorO.Ifattimet = 0 Time_evolution.nb:9/26/04::22:57:04 5 O t=0 = a O a ; ? ; « « ? Thenatsomelatertime i i † ÅÅÅÅ Ht - ÅÅÅÅ Ht O t = a, t O a, t = a U t, 0 OU t, 0 a = a e O e a . ; ? ; ? ; + / + / ? ; ? ü ConservationandcommutationwithH i - ÅÅÅÅ Ht ∑ If O, H = 0,then O, e = 0,and O t = O t=0 ,oralternatively, ÅÅÅÅ∑tÅÅ O = 0.IfOcommuteswithH thenO correspondstoaconservedquantity,butnototherwise.# ' $ ( ; ? ; ? ; ? ü Thetwostatesystemagain Forexample,considerthetwostatesystemfromabove. * iw1 t * iw2 t -iw1 t -iw2 t a0, t O a0, t = 1 c1 e + 2 c2 e O c1 e 1 + c2 e 2 ; ? +; ; / + ? ?/ If O, H = 0thentheenergyeigenstatesarealsoeigenstatesoftheoperatorO,soO i = oi i and # ' ? ? * iw1 t * iw2 t -iw1 t -iw2 t a0, t O a0, t = 1 c1 e + 2 c2 e c1 e o1 1 + c2 e o2 2 2 2 ; = c1 ? o1 +; c 2 o2, ; / + ? ?/ O isindependentoftimeandisconserved. ; ? Ontheotherhand,if O, H ∫ 0thenonemustconsideramoregeneralOwhichmixesenergyeigenstates.Adopting o o # 11 '12 * matrixnotationO = .IfOcorrespondstoanobservableitisHermitian,ando21 = o12 .Then L o21 o22 \ M ] N ^ -iw t 1 * iw t * iw t o11 o12 c1 e 1 2 c1 e c2 e -iw t = L o21 o22 \ L c e 2 \ + / M ] M 2 ] N N -iw1 t -iw2 t ^o11 c1 e ^ + o12 c2 e * iw1 t * iw2 t 2 2 * iwt c1 e c2 e = c1 o1 + c2 o2 + 2 Re c1 c2 e o12 L o c e-iw1 t + o c e-iw2 t \ + / M 21 1 22 2 ] + / N ^ ü spinprecesion e 1 0 Asanexample,considerspinprecesion.TheHamiltonianisH = ÅÅÅÅ sz ,wheresz = ,e = wandstate 1 2 L 0 -1 \ M ] ? correspondstothe z+ polarizationstate.PrecessionisdescribedbytheevolutionofN ^ 0 1 ? 0 i sx = , sy = and sz .Firstconsiderthecasewherethesystemstartsinaspinupstate, L 1 0 \ L -i 0 \ ; ? >M ]B ; ? >M ]B ; ? c1 = 1, cN2 = 0. ^Then sx =N sy =^ 0sincefortheseoperatorso11 = 0.Also, sz t = 1.Nextconsiderthecasewhere ` 1 1 thesystemstartspolarizedinthe; ? ; ?xdirection,c1 = c2 = 1 2 .Now, sz t ;= ÅÅ?ÅÅ+-/ ÅÅÅÅ = 0.Moreinterestingis r 2 2 t ; ? + / 1 iwt sx t = 0 + 0 + 2 Re ÅÅ2ÅÅ e = cos wt ,and 1 iwt ;sy? +t/ = 0 + 0 + 2 Re + ÅÅ2ÅÅ e / i = sin + w/t . ; ? + / + / + / Thespinprecesses,asitshould. Time_evolution.nb:9/26/04::22:57:04 6 ü "Pictures" ConsideranoperatorOwithnoexplicittimedependence,whichisdefinedforsomevectorspacespannedbythebasis kets i .ThenOisdefinedbythematrixelements i O j .Next,considertheevaluationofObetweentwostates definedattime ? t = 0, b, 0 O a, 0 ,andhowthisquantityevolveswithtime.; ? ; ? † b0, t O a0, t = b0 U t, 0 OU t, 0 a0 ª b0 O t a0 . ; ? ; + / + / ? ; + / ? ThelaststepdefinesanoperatorO t .Thesearethreewaysofwritingthesamething.Thefirstputsthetime dependenceintothestateevolution.Thethirdputsthetimedependenceintotheoperators.In+ / themiddle,boththestates andtheoperatorsarestaticandthetimedependenceisaccountedforbyinclusionoftimeevolutionoperators.Thefirst iscalledtheSchroedingerpicture,thethirdiscalledtheHeisenbergpicture.Thereisabitofrelativityhere-whichis movingthesystemortheoperator?orshouldIsayobserver?Idon'tknowofanameforthemiddlenotationwhereonly U knowsabouttime.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    9 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us