Renormalization of Dirac's Polarized Vacuum

Renormalization of Dirac's Polarized Vacuum

Renormalization of Dirac’s polarized vacuum Mathieu LEWIN [email protected] (CNRS & Universit´ede Cergy-Pontoise) joint works with C. Hainzl (Tuebingen), P. Gravejat, E.´ S´er´e (Paris) & J.-P. Solovej (Copenhagen) Ecole´ Polytechnique, Dec. 7, 2010 Mathieu LEWIN (CNRS / Cergy) Renormalization of Dirac’s vacuum X, Dec. 7, 2010 1 / 16 Dirac operator Energy of a free electron (p i ): ←→ − ∇ non relativistic relativistic classical mechanics E = p2/(2m) E 2 = c2p2 + m2c4 quantum mechanics H = ∆/(2m) D2 = c2∆+ m2c4 − − Free Dirac operator: 3 0 2 2 D = ic αk ∂k + βmc = icα~ + βmc − − ·∇ k X=1 α~ = (α , α , α ), β = 4 4 hermitian matrices, chosen such that 1 2 3 × (D0)2 = c2∆+ m2c4. − ◮ Unbounded from below: σ(D0) = ( ; mc2] [mc2;+ ). −∞ − ∪ ∞ Units: m = c = 1, α = e2. Mathieu LEWIN (CNRS / Cergy) Renormalization of Dirac’s vacuum X, Dec. 7, 2010 2 / 16 A nonlinear Dirac equation Stationary equation including Vacuum Polarization effects: P = χ(−∞,µ) (D) 0 −1 (1) D = D + α(ρ ν) x + XP P−1/2 − ∗ | | α = e2 (bare) fine structure constant ν charge density of nucleus (ex: ν = Zδ0) µ chemical potential chosen to fix total charge (P−1/2)(x,y) α (Hartree-Fock Theory) − |x−y| XP = 0 (Reduced Hartree-Fock Theory) ∂Fxc ∂ρ (ρP−1/2) (Relativistic Density Functional Theory) ◮ Density ρQ (x) := trC4 (Q(x, x)) [Dir34] P.A.M. Dirac. Solvay report XXV, 1934. [EngDre87] Engel and Dreizler, Phys. Rev. A, 1987. Mathieu LEWIN (CNRS / Cergy) Renormalization of Dirac’s vacuum X, Dec. 7, 2010 3 / 16 Interpretation P = χ (D) (−∞,µ) (1) D = D0 + α(ρ ν) x −1 + 0 P−1/2 − ∗ | | ◮ ν ≡ 0 solution P = P0 := χ (D0) (free vacuum), µ ( 1, 1). − (−∞,0) ∀ ∈ − 0 1 α~ ·p+β Reason: P = = ρ 0 0. − − 2 − 2√1+|p|2 ⇒ P−−1/2 ≡ Rmk: For HF the free vacuum is different [HaiLewSol07]. Mathieu LEWIN (CNRS / Cergy) Renormalization of Dirac’s vacuum X, Dec. 7, 2010 4 / 16 Interpretation P = χ (D) (−∞,µ) (1) D = D0 + α(ρ ν) x −1 + 0 P−1/2 − ∗ | | ◮ ν ≡ 0 solution P = P0 := χ (D0) (free vacuum), µ ( 1, 1). − (−∞,0) ∀ ∈ − 0 1 α~ ·p+β Reason: P = = ρ 0 0. − − 2 − 2√1+|p|2 ⇒ P−−1/2 ≡ Rmk: For HF the free vacuum is different [HaiLewSol07]. ◮ ν =6 0 polarized vacuum polarized vacuum + electrons pol. vacuum pol. vacuum electrons P µ = 0 σ(D) P µ σ(D) Dirac-Fock eqs including Vacuum ≃ Polarization [ChaIra89] [HaiLewSol07] Hainzl, L. and Solovej. Comm. Pure Applied Math. (2007). [ChaIra89] Chaix and Iracane. J. Phys. B (1989). Mathieu LEWIN (CNRS / Cergy) Renormalization of Dirac’s vacuum X, Dec. 7, 2010 4 / 16 Difficulties & Outline ◮ There is no solution to the nonlinear equation (1) when ν = 0! 6 need to add an ultraviolet cut-off Λ renormalization ◮ Possible to add classical SCF magnetic field ( photons), but no ≃ mathematical result so far. Mathieu LEWIN (CNRS / Cergy) Renormalization of Dirac’s vacuum X, Dec. 7, 2010 5 / 16 Difficulties & Outline ◮ There is no solution to the nonlinear equation (1) when ν = 0! 6 need to add an ultraviolet cut-off Λ renormalization ◮ Possible to add classical SCF magnetic field ( photons), but no ≃ mathematical result so far. Outline Existence and non-existence of solutions Renormalization Mathieu LEWIN (CNRS / Cergy) Renormalization of Dirac’s vacuum X, Dec. 7, 2010 5 / 16 Existence, nonperturbative regime Regularization: Π = orth. projector onto H = f L2(R3; C4) : Λ Λ { ∈ supp(f ) B(0; Λ) . Define := f : f (k) 2/ k 2 < . ⊂ } C { | | | | ∞} R b b Mathieu LEWIN (CNRS / Cergy) Renormalization of Dirac’s vacuum X, Dec. 7, 2010 6 / 16 Existence, nonperturbative regime Regularization: Π = orth. projector onto H = f L2(R3; C4) : Λ Λ { ∈ supp(f ) B(0; Λ) . Define := f : f (k) 2/ k 2 < . ⊂ } C { | | | | ∞} R Theoremb (Existence [HaiLewSer05,GraLewSer09])b For all µ ( 1, 1), α 0, Λ > 0 and ν , there exists one solution to ∈ − ≥ ∈C P = χ(−∞,µ) (D) + δ 0 1 (2) D = Π D + α(ρ 0 ν) Π ( Λ P−P− − ∗ |x| Λ where 0 δ 1 (D), such that ≤ ≤ {µ} 0 0 0 0 2 P P S , P (P P )P S , ρ 0 L . − − ∈ 2 ± − − ± ∈ 1 P−P− ∈ ∩C ◮ 0 All such solutions share the same density ρP−P− . ◮ If απ1/6211/6 ν < 1 and µ = 0, then δ = 0 and P = P2 is unique. In || ||C this case tr P0 (P P0 )P0 + P0 (P P0 )P0 = 0. − − − − + − − + [HaiLewSer05] Hainzl, L. and S´er´e. Comm. Math. Phys. + J. Phys. A: Math & Gen. (2005). [GraLewSer09] Gravejat, L. and S´er´e. Comm. Math. Phys. (2009). Mathieu LEWIN (CNRS / Cergy) Renormalization of Dirac’s vacuum X, Dec. 7, 2010 6 / 16 Idea of proof (µ = 0): variational method 0 ◮ Subtract infinite constant, using ρ 0 0 and Q = P P P−−1/2 ≡ − − “ ν (P 1/2) ν (P0 1/2)” = EHF − −EHF − − ρ (x)ν(y) α ρ (x)ρ (y) tr D0Q α Q dx dy + Q Q dx dy := ν (Q) − x y 2 x y EBDF ZZ | − | ZZ | − | ◮ Then [BacBarHelSie99], notice Q2 = Q++ Q−− and − tr D0Q = tr D0 (Q++ Q−−)= tr D0 Q2 | | − | | ◮ Minimize the convex fn ν on the convex hull [Lie81] EBDF Q = Q∗ : Q2 Q++ Q−− S { ≤ − ∈ 1} ∗ ±± 2 ◮ The map Q = Q S (H ) : Q S (H ) ρQ L is { ∈ 2 Λ ∈ 1 Λ } 7→ ∈ ∩C continuous ◮ For µ = 0, replace D0 by D0 µ 6 − [BacBarHelSie99] Bach, Barbaroux, Helffer and Siedentop. Comm. Math. Phys. (1999). [Lie81] Lieb. Phys. Rev. Lett. (1981). Mathieu LEWIN (CNRS / Cergy) Renormalization of Dirac’s vacuum X, Dec. 7, 2010 7 / 16 Charge ◮ We define the charge of our solution as 0 0 0 0 tr 0 tr P− (Q) := P−QP− + P+QP+ 2 0 Rmk. if P = P, then tr 0 (P P ) Z, [AvrSeiSim94,HaiLewSer05] P− − − ∈ ◮ By convexity, ν ν choosing µ ! solving E (q) := inf (Q), tr 0 (Q)= q {EBDF P− } no minimizer ∃ a minimizer E ν (q) ν ∂E (q) µ = ∂q q qm q0 qM [AvrSeiSim94] Avron, Seiler and Simon. J. Funct. Anal. (1994). Mathieu LEWIN (CNRS / Cergy) Renormalization of Dirac’s vacuum X, Dec. 7, 2010 8 / 16 Maximum ionization Theorem (Maximum Ionization [GraLewSer-09]) Assume ν L1 with Z := ν. ∈C∩ ◮ Then Z [qm; qM ] (existence of neutral atoms). ∈ R ◮ For α ν + α(1 + log Λ) C ′ and Z 0, one has || ||C ≤ ≥ α log Λ + 1/Λ+ α ν C C || || qm 0 − 1 Cα logΛ ≤ ≤ − and 2Z + C (α log Λ + 1/Λ+ α ν C) Z qM || || . ≤ ≤ 1 Cα logΛ − Generalizes a result of Lieb in the nonrelativistic setting [Lie84]. [Lie84] Lieb. Phys. Rev. A (1984). Mathieu LEWIN (CNRS / Cergy) Renormalization of Dirac’s vacuum X, Dec. 7, 2010 9 / 16 Renormalization ◮ (Bare) parameters: charge e (α = e2) and mass m(= 1) Regularization: UV cut-off Λ predicted observables = functions (α, Λ) ⇒ O ◮ Predicted charge / coupling constant: αph(α, Λ) = α 6 ◮ Renormalization formulae: see α as fn of (αph, Λ) αph = αph(α, Λ) = α = α(αph, Λ) ⇒ predicted observables = functions (αph, Λ) ⇒ O ◮ Renormalization: ‘remove’ Λ from observable (αph, Λ) O (possibly only perturbatively in αph) Mathieu LEWIN (CNRS / Cergy) Renormalization of Dirac’s vacuum X, Dec. 7, 2010 10 / 16 Charge renormalization Theorem (Charge renormalization [GraLewSer-09]) Assume that ν L1(R3) with Z = ν, Λ > 0, α 0 and µ ( 1, 1). ∈ ∩C ≥ ∈ − 1 3 Then ρ 0 L (R ) and it holds P−P− ∈ R 0 tr 0 Z P− (P P−) 0 − − Z ρP−P− = (3) − R3 1+ αB Z Λ where B = 2 logΛ 5 + 2 log 2 + O(1/Λ2). Λ 3π − 9π 3π ◮ Except in neutral case, solutions are singular: P P0 / S − − ∈ 1 ◮ For ν small, µ = 0, observe αphZ and not αZ, with || ||C α αph αph = α = 1+ αB ⇐⇒ 1 αphB Λ − Λ Pb (Landau pole): αphB < 1, hence Λ αph 0. Λ →∞⇒ → Mathieu LEWIN (CNRS / Cergy) Renormalization of Dirac’s vacuum X, Dec. 7, 2010 11 / 16 Self-consistent equation ◮ Assume µ = 0 and ker(D)= 0 . Cauchy’s formula: { } 1 ∞ 1 1 P P0 = dη − − 2π D + iη − D0 + iη −∞ We get in Fourier space Z ρ 0 (k)= αB (k) ρ 0 (k) ν(k) + F α(ρ 0 ν) (4) P−P− − Λ P−P− − Λ P−P− − b whereb b b 1 (ℓ+k/2)·(ℓ−k/2)+1−E(ℓ+k/2)E(ℓ−k/2) BΛ(k)= π2|k|2 |ℓ+k/2|≤Λ, E(ℓ+k/2)E(ℓ−k/2)(E(ℓ+k/2)+E(ℓ−k/2)) dℓ − |ℓ−k/2|≤Λ R and FΛ(f )= n≥1 F2n+1,Λ(f , ..., f ) with k P 1 ∞ 1 1 1 Fk (f , ..., fk )= ρ Π fj Π dη ,Λ 1 2π D0 + iη Λ ∗ x Λ D0 + iη −∞ j Z Y=1 | | Mathieu LEWIN (CNRS / Cergy) Renormalization of Dirac’s vacuum X, Dec. 7, 2010 12 / 16 Renormalized equation ◮ Renormalized density: ρph = ρph(αph, Λ) defined for αphBΛ < 1 by α(ν ρ 0 )= αphρph − P−P− 0 −1 such that D = D αphρph − ∗|·| ◮ We can re-express Eq. (4) in terms of physical quantities as (1 αphU (k))ρph + F (αphρph)= ν − Λ Λ b where U (k)= B (0) B (k) 0b b Λ Λ − Λ ≥ Rmk. k 2 1 z2 z4/3 2 lim UΛ(k)= | | − dz := U(k) |k|→∞ log k Λ→∞ 4π 1+ k 2(1 z2)/4 ∼ 3π | | Z0 | | − [HaiLewSer05b] C.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    19 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us