Antiaromaticity.Pdf

Antiaromaticity.Pdf

MSc(Chem) 1st Sem Dr Sanjeev Kumar Jha M.L.T. College, Saharsa Antiaromaticity Antiaromaticity is a characteristic of a cyclic molecule with a π electron system that has higher energy due to the presence of 4n delocalised (π or lone pair) electrons in it. Unlike aromatic compounds, which follow Hückel's rule ([4n+2] π electrons) and are highly stable, antiaromatic compounds are highly unstable and highly reactive. To avoid the instability of antiaromaticity, molecules may change shape, becoming non-planar and therefore breaking some of the π interactions. In contrast to the diamagnetic ring current present in aromatic compounds, antiaromatic compounds have a paramagnetic ring current, which can be observed by NMR spectroscopy. Examples of antiaromatic compounds. A: pentalene; B: biphenylene; C: cyclopentadienyl cation. Cyclooctatetraene is an example of a molecule adopting a non-planar geometry to avoid the destabilization that results from antiaromaticity. If it were planar, it would have a single eight-electron π system around the ring, but it instead adopts a boat-like shape with four individual π bonds drawn as below. Cyclooctatetraene Boat shape Criteria for antiaromaticity The term 'antiaromaticity' was first proposed by Ronald Breslow in 1967 as "a situation in which a cyclic delocalisation of electrons is destabilising". The IUPAC criteria for antiaromaticity are as follows: 1. The molecule must be cyclic. 2. The molecule must be planar. 3. The molecule must have a complete conjugated π-electron system within the ring. 4. The molecule must have 4n π-electrons where n is any integer within the conjugated π-system. This differs from aromaticity in the fourth criterion: aromatic molecules have 4n +2 π-electrons in the conjugated π system and therefore follow Hückel’s rule. Non-aromatic molecules are either noncyclic, nonplanar, or do not have a complete conjugated π system within the ring. Homoaromaticity The concept of homoaromaticity was pioneered by Saul Winstein in 1959, prompted by his studies of the “tris-homocyclopropenyl” cation. Homoaromaticity, refers to a special case of aromaticity in which conjugation is interrupted by a single sp3 hybridized carbon atom. Although this sp3 center disrupts the continuous overlap of p-orbitals, thought to be a requirement for aromaticity, considerable thermodynamic stability and many of the spectroscopic, magnetic, and chemical properties associated with aromatic compounds are still observed for such compounds. This formal discontinuity is apparently bridged by p-orbital overlap, maintaining a contiguous cycle of π electrons that is responsible for this preserved chemical stability + The 'homotropylium' cation (C8H9 ) is perhaps the best studied example of a homoaromatic compound. + The homoaromatic homotropylium cation C8 H9 .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    3 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us