2020 Mathsoc Integration Bee Qualifiers Solutions

2020 Mathsoc Integration Bee Qualifiers Solutions

2020 MathSoc Integration Bee Qualifiers Solutions 1. Standard integral, but the bounds are tricky: Z 507 1 x dx = 5072 − 5032 503 2 1 = (507 + 503) (507 − 503) 2 1 = · 1010 · 4 2 = 2020: 2. Rewrite 3ln x as xln 3 using log laws, so now we have a standard integral: Z Z x1+ln 3 3ln x dx = xln 3 dx = + C: 1 + ln 3 3. This is simply integrating ex=2: Z p Z p ex dx = ex=2 dx = 2 ex + C: p 4. Substitute u = ex − 1: Z p Z u2 Z 1 ex − 1 dx = 2 du = 2 1 − du u2 + 1 1 + u2 = 2 u − tan−1 u + C p p = 2 ex − 1 − tan−1 ex − 1 + C: 5. Substitute x = eu then the integral becomes Z eu cos u du: Apply integration by parts twice: Z Z eu cos u du = eu cos u + eu sin u du Z = eu cos u + eu sin u − eu cos u du: Rearrange to obtain Z 1 eu cos u du = eu (cos u + sin u) ; 2 then Z 1 cos (ln x) dx = x (cos (ln x) + sin (ln x)) + C: 2 6. Substitute u = e2x, then Z e2x 1 Z 1 1 1 p dx = p du = sin−1 u + C = sin−1 e2x + C: 1 − e4x 2 1 − u2 2 2 Z 7π=4 4x cos x 7. This is an odd function from "−a to a" so 2 dx = 0. −7π=4 x − sin jxj + cos jxj c UNSW Mathematics Society 2020 π 8. Substitute u = − x, then 2 Z π=2 sink x Z π=2 cosk u dx = du: k k k k 0 sin x + cos x 0 cos u + sin u Adding the two integrals, we have Z π=2 sink x Z π=2 sink x + cosk x Z π=2 π 2 dx = dx = dx = k k k k 0 sin x + cos x 0 sin x + cos x 0 2 Z π=2 sink x π dx = : k k 0 sin x + cos x 4 9. Multiply numerator and denominator by ex: Z ex dx: 1 + e2x Now substitute u = ex: Z ex Z 1 dx = du = tan−1 u + C = tan−1 (ex) + C: 1 + e2x 1 + u2 10. First, substitute u = tan x: Z Z sec2 (x) sec2 (tan (x)) sec2 (tan (tan (x))) dx = sec2 (u) sec2 (tan (u)) du: Now substitute v = tan (u): Z Z sec2 (u) sec2 (tan (u)) du: = sec2 v dv = tan v + C = tan (tan (tan x)) + C: jxk 11. From 0 to 1, the integrand is identically 0. From 1 to 2, is 0 and bxc is 1. Hence 2 Z 2 jxk Z 2 bxc − 2 dx = dx = 1: 0 2 1 12. Substitute u = 2x, then p p Z 3=4 2x sin−1 (2x) 1 Z 3=2 u sin−1 u p dx = p du: 2 2 0 1 − 4x 2 0 1 − u Now substitute u = sin v: p 1 Z 3=2 u sin−1 u 1 Z π=3 p du = v sin v dv: 2 2 0 1 − u 2 0 Here, we use by parts to obtain the answer, p 1 Z π=3 3 π v sin v dv = − : 2 0 4 12 13. Substitute x = u2, then Z 1 p Z 1 sin−1 x dx = 2u sin−1 u du: 0 0 Now substitute u = sin v, then Z 1 Z π=2 2u sin−1 u du = v sin 2v dv: 0 0 Here, we use by parts to obtain the final answer: Z π=2 π v sin 2v dv = : 0 4 c UNSW Mathematics Society 2020 14. First we multiply the numerator and denominator by cos4 x: Z π=2 1 Z π=2 cos4 x dx = dx: 4 4 4 0 1 + tan x 0 cos x + sin x Now we can use the answer from Q8: Z π=2 cos4 x π dx = : 4 4 0 cos x + sin x 4 15. From 0 to π=2 the integrand is x. From π=2 to 3π=2 the integrand is π − x. Hence Z 3π=2 Z π=2 Z 3π=2 sin−1 (sin x) dx = x dx + (π − x) dx 0 0 π=2 π2 π2 = + π2 − π2 = : 8 8 16. Separate the integrand via partial fractions: Z 1 dx Z 1 1 x 2 = − 2 dx: 1 x(x + 1) 1 x x + 1 These can both be integrated into logarithms: Z 1 1 x h p i1 x 1 1 − dx = ln x − ln 1 + x2 = ln p = ln 2: 2 2 1 x x + 1 1 1 + x 1 2 17. Multiply the numerator and denominator by 1 − sin x: Z π=2 Z π=2 Z π=2 1 1 − sin x 2 sin x dx = 2 dx = sec x − 2 dx 0 1 + sin x 0 1 − sin x 0 cos x π=2 sin x − 1 = [tan x − sec x]0 = lim + 1 x!π=2 cos x = 1: 18. Substitute x = cos u, then Z −1 Z ecos x dx = − eu sin u du: We can apply integration by parts here, or simply quote the result: Z 1 eu sin u du = eu (sin u − cos u) : 2 Hence Z −1 1 −1 ecos x dx = − ecos x sin cos−1 x − cos cos−1 x + C: 2 p We can simplify further by observing that sin cos−1 x = 1 − x2 and cos cos−1 x = x so Z −1 1 −1 p ecos x dx = ecos x x − 1 − x2 + C: 2 19. Begin by transforming the denominator into a cosine function via auxiliary angle method: 4 3 cos x + 4 sin x = 5 cos x − sin−1 : 5 c UNSW Mathematics Society 2020 Substituting this result into the integral: Z π=2 Z π=2 25 2 −1 4 2 dx = sec x − sin dx 0 (3 cos x + 4 sin x) 0 5 4π=2 = tan x − sin−1 5 0 π 4 4 = tan − sin−1 + tan sin−1 2 5 5 4 4 = cot sin−1 + tan sin−1 5 5 3 4 25 = + = : 4 3 12 20. Multiply the numerator and denominator by x−7: Z 1 Z x−7 1 dx = dx = − ln 1 + x−6 + C: x7 + x 1 + x−6 6 c UNSW Mathematics Society 2020 2020 MathSoc Integration Bee Team Standoff Solutions • Team A Question 1: Substitute u = ln x, then Z x − 1 Z eu − 1 dx = du: x + x2 ln x 1 + ueu Now we multiply numerator and denominator by e−u: Z u Z −u e − 1 −e + 1 −u du = du = ln e + u + C: 1 + ueu e−u + u • Team A Question 2: We have symmetry around x = 1 so Z 2 π jx − 1j Z 1 π jx − 1j sin2 dx = 2 sin2 dx: 0 2 0 2 For this interval, jx − 1j = 1 − x so Z 1 π jx − 1j Z 1 π(1 − x) 2 sin2 dx = 2 sin2 dx 0 2 0 2 Z 1 πx = 2 cos2 dx 0 2 Z 1 = (1 − cos (πx)) dx 0 = 1: • Team A Question 3: Substitute x = u2: Z 1=4 p Z 1=2 e x dx = 2ueu du: 0 0 Then by integration by parts, Z 1=2 Z 1=2 u u 1=2 u 2ue du = 2 [ue ]0 − 2 e du 0 p 0 = 2 − e: • Team B Question 1: First we complete the square in the square root, s p 1 12 x − x2 = − x − : 4 2 Hence our integral can be written as Z 1 Z 1 p dx = dx 2 s x − x 1 12 − x − 4 2 Z 1 = 2 q dx 1 − (2x − 1)2 = sin−1 (2x − 1) + C: c UNSW Mathematics Society 2020 π • Team B Question 2: Using the substitution u = − x, 4 Z π=4 Z π=4 π ln (1 + tan x) dx = ln 1 + tan − x dx: 0 0 4 π 1 − tan x However tan − x = so 4 1 + tan x Z π=4 Z π=4 1 − tan x ln (1 + tan x) dx = ln 1 + dx 0 0 1 + tan x Z π=4 2 = ln dx 0 1 + tan x Z π=4 Z π=4 = ln 2 dx − ln (1 + tan x) dx 0 0 Z π=4 π ln 2 ln (1 + tan x) dx = : 0 8 π • Team B Question 3: We use the substitution u = − x: 2 Z π=2 cos2 x Z π=2 sin2 x dx = : 0 sin x + cos x 0 cos x + sin x Hence by adding the two integrals, we have Z π=2 cos2 x Z π=2 sin2 x + cos2 x Z π=2 1 2 dx = dx = dx: 0 sin x + cos x 0 sin x + cos x 0 sin x + cos x Now use the auxiliary angle method on the denominator: p π sin x + cos x = 2 cos x − : 4 So the RHS integral becomes Z π=2 1 Z π=2 1 π dx = p sec x − dx 0 sin x + cos x 0 2 4 1 π π π=2 = p ln sec x − + tan x − 2 4 4 0 p ! 1 2 + 1 = p ln p : 2 2 − 1 Hence our original integral is p ! Z π=2 cos2 x 1 2 + 1 dx = p ln p : 0 sin x + cos x 2 2 2 − 1 • Team C Question 1: First we divide the numerator and denominator by x2: Z x2 − 1 Z 1 − x−2 dx = dx: x4 + 1 x2 + x−2 1 Now by using the substitution u = x + , x Z 1 − x−2 Z 1 dx = du: x2 + x−2 u2 − 2 c UNSW Mathematics Society 2020 Separating the integrand using partial fractions, p Z 1 1 Z 1 1 1 u − 2 du = p p − p du = p ln p + C: u2 − 2 2 2 u − 2 u + 2 2 2 u + 2 Hence our integral is p Z x2 − 1 1 x2 − 2x + 1 dx = p ln p + C: x4 + 1 2 2 x2 + 2x + 1 • Team C Question 2: The terms of odd power integrate to 0, so we only need to consider the even powered terms.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    13 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us