Lecture 8: Light Propagation in Anisotropic Media Petr Kužel

Lecture 8: Light Propagation in Anisotropic Media Petr Kužel

Lecture 8: Light propagation in anisotropic media Petr Kužel • Tensors — classification of anisotropic media • Wave equation • Eigenmodes — polarization eigenstates • Normal surface (surface of refractive indices) • Indicatrix (ellipsoid of refractive indices) Anisotropic response Isotropic medium, linear response: = ε χ P 0 E = ε = ε ()+ χ D E 0 1 E Anisotropic medium: the polarization direction does not coincide with the field direction: = ε (χ + χ + χ ) Px 0 11Ex 12Ey 13Ez , = ε ()χ + χ + χ Py 0 21Ex 22Ey 23Ez , ! Tensors = ε ()χ + χ + χ Pz 0 31Ex 32Ey 33Ez . P = ε χ E k⊥D i 0 ij j k is not parallel to S = ε = ε ( + χ ) S⊥E Di ij E j 0 1 ij E j Tensors Transformation of a basis: = f j Aijei Corresponding transformation of a tensor: = ′ ′ = −1 st xk Aki xi xi Aik xk 1 rank (vector) ′ = −1 −1 = ′ nd tkl Aik Ajl tij tij Aki Aljtkl 2 rank p = A A A p′ th i1,i2!in k1i1 k2i2 ! knin k1,k2!kn n rank Tensors: symmetry considerations Intrinsic symmetry: reflects the character of the physical phenomenon represented by the tensor (usually related to the energetic considerations) ε = ε∗ ik ki Extrinsic symmetry: reflects the symmetry of the medium p = A A A p ε = A A ε i1,i2!in k1i1 k2i2 ! knin k1,k2!kn ij ki lj kl Example: two-fold axis along z: −1 0 0 ε = ε = ε ⇒ε=ε = 13 A11 A33 13 – 13 13 31 0 = − A 0 1 0 ε = ε = ε ⇒ε=ε = 23 A22 A33 23 – 23 23 32 0 0 0 1 Tensors: symmetry considerations Second example: higher order axis along z: ε = 2ε + 2ε − ε α α 11 c 11 s 22 2sc 12 cos sin 0 ε = 2ε + 2ε + ε A = − sin α cosα 0 22 s 11 c 22 2sc 12 ε = ε − ε + ()2 − 2 ε 0 0 1 12 sc 11 sc 22 c s 12 The above system of equations leads to: ()ε − ε 2 = − ε 11 22 s 2sc 12 ()ε − ε = 2ε 11 22 sc 2s 12 Solution for a higher (than 2) order axis: sinα ≠ 0 ε ε ε 11 = 22, 12 = 0 ε Dielectric tensor Crystallographic ij Optical symmetry crystallographic system system optical system of axes of axes 2 2 æ n 0 0 ö n 0 0 Axes systems: ç ÷ 2 2 ε = ε isotropic cubic e = e ç 0 n 0 ÷ 0 0 n 0 0 ç ÷ 2 2 ç 0 0 n ÷ 0 0 n • crystallographic è ø 2 2 hexagonal no 0 0 no 0 0 • optical (dielectric) 2 2 uniaxial tetragonal ε = ε0 0 n 0 ε = ε0 0 n 0 o 2 o 2 trigonal 0 0 n 0 0 n • laboratory e e 2 2 nx 0 0 nx 0 0 ε = ε 2 ε = ε 2 orthorhombic 0 0 n y 0 0 0 n y 0 2 2 0 0 nz 0 0 nz 2 ε ε nx 0 0 11 12 0 2 biaxial monoclinic ε = ε0 0 n 0 ε = ε12 ε22 0 y 2 ε 0 0 nz 0 0 33 2 ε ε ε nx 0 0 11 12 13 2 triclinic ε = ε0 0 n 0 ε = ε12 ε22 ε23 y 2 ε ε ε 0 0 nz 13 23 33 Wave equation Maxwell equations for harmonic plane waves: ∧ = ωµ k E 0 H k ∧ H = −ωε⋅ E in the system of principal optical axes 2 nx 0 0 ε = ε 2 0 0 ny 0 2 0 0 nz Wave equation: ∧ ()∧ + ω2µ ε⋅ = ()⋅ − 2 + ω2µ ε⋅ = k k E 0 E k k E k E 0 E 0 or ω2 s()s ⋅ E − E + ε ⋅ E = 0 k 2c2 r Wave equation: continued We define effective refractive index: kc n = ω Wave equation in the matrix form: n2 − n2 ()s2 + s2 n2s s n2s s x y z x y x z Ex n2s s n2 − n2 ()s2 + s2 n2s s E = 0 x y y x z y z y 2 2 2 − 2 ()2 + 2 n sxsz n sy sz nz n sx sy Ez Solutions of this homogeneous system: det = 0. • Effective refractive index n for a given propagation direction • Frequency ω for a given wave vector k • Surface of accepted wave vector moduli for a given ω (normal surface or surface of refractive indices) Wave equation: continued After having developed the determinant one obtains: ω2 2 ω2n2 ω2 2 ω2n2 ω2 2 nx − 2 y − 2 nz − 2 + 2 y − 2 nz − 2 + 2 k 2 k 2 k kx 2 k 2 k c c c c c ω2 2 ω2 2 ω2 2 ω2n2 2 nx − 2 nz − 2 + 2 nx − 2 y − 2 = k y 2 k 2 k kz 2 k 2 k 0 . c c c c or in terms of the effective refractive index: ()()()2 − 2 2 − 2 2 − 2 + nx n ny n nz n 2 []2 ()()()()()()2 − 2 2 − 2 + 2 2 − 2 2 − 2 + 2 2 − 2 2 − 2 = n sx ny n nz n sy nx n nz n sz nx n ny n 0 . This is a quadratic equation in n2, thus it provides two eigenmodes for a given direction of propagation s. Wave equation: continued ≠ In the case when n ni, the wave equation can be further simplified: 2 s2 2 sx + y + sz = 1 2 − 2 2 − 2 2 − 2 2 n nx n ny n nz n Polarization of the electric field for the eigenmodes: n2 − n2 ()s2 + s2 n2s s n2s s x y z x y x z Ex 2 2 − 2 ()2 + 2 2 = n sxsy ny n sx sz n sy sz Ey 0 n2s s n2s s n2 − n2 ()s2 + s2 E x z y z z x y z sx 2 − 2 N nx s For n ≠ n : E = y i 2 − 2 N ny s z 2 − 2 N nz Isotropic case = = ≡ nx ny nz n0 wave equation: ()2 − 2 2 2 = n0 n n 0 Normal surface: degenerated sphere Eigen-polarization: arbitrary (Isotropic materials, cubic crystals) Uniaxial case = ≡ ≡ ≠ nx ny no and nz ne no wave equation: s2 + s2 2 ()2 − 2 1 − x y − sz = no n 2 2 2 0 n ne no Normal surface: sphere + ellipsoid with one common point in the z-direction Sections of the normal surface: s y positive uniaxial crystal sz no no ne ne sx sx Uniaxial case: continued s z S no E D s or k H sx ne Uniaxial case: continued Propagation ordinary ray extraordinary ray (z ≡ optical axis) degenerated case (equivalent to isotropic medium); k // z index n , E ⊥ k o index n , k ⊥ z e index n , E // z o E in the (xy) plane, index n(θ), k: angle θ with z E ⊥ k E in the (kz) plane, E ⋅ k ≠ 0 sin2 θ cos2 θ 1 with + = 2 2 2 ()θ ne no n Biaxial case < < nx ny nz Normal surface has a complicated form Biaxial case: continued Sections of the normal surface by the planes xy, xz, and yz: sy nz n sx = 0: x 2 2 2 1 s + s 1 s2 s − z y − z − y = 0 2 2 2 2 2 ny sx n nx n ny nz sz ny s = 0: y n 2 + 2 2 2 z 1 sx sz 1 sx sz − − − = 0 2 2 2 2 2 sx n ny n nz nx sz ny s = 0: z n 2 2 2 n z 1 s + s 1 s2 s x − x y − x − y = 0 2 2 2 2 2 sy n nz n ny nx Group velocity in anisotropic media Maxwell equations in the Fourier space: ∧ = ωµ ⋅ k E 0 H / H k ∧ H = −ωε⋅ E /⋅ E One can finally obtain: 2k ⋅()E ∧ H S ω = = k ⋅ E ⋅ D + H ⋅ B U This means: S v = ∇ ω = = v g k U e Birefringence Isotropic medium: incident plane wave, reflected plane wave Anisotropic medium: refracted wave is decomposed into the eigenmodes • Tangential components should be conserved on the interface: α = α = α ki sin i k1 sin 1 k2 sin 2 • k1 and k2 are not constant but depend on the propagation direction • Thus we get generalized Snell’s law for an ordinary and an extra- ordinary beam: α = α = ()α α ni sin i no sin 1 n 2 sin 2 • Analytic solution only for special cases • Numerical solution • Graphic solution Birefringence: graphic solution Birefringence: uniaxial crystals > < positive (ne no) negative (ne no) O E optical axis optical axis E O optical axis O optical axis E E O optical axis O optical axis E E O Indicatrix: ellipsoid of indices z 2 2 2 s x + y + z = 2 2 2 1 nx ny nz DII, NII DI, NI.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    20 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us