The Spectrum of Ore Deposit Types, Volcanic Environments, Alteration Halos, and Related Exploration Vectors in Submarine Volcanic Successions: Some Examples from Australia Ross R. LARGE,+JOCELYN MCPHIE, J. BRUCEGEMMELL, WALTER HERRMANN, AND GARRY1. DAV~DSON Centre for Ore Deposit Research, School of Earth Sciences, Uniuersity of Tosmonia, GPO Box 252-79, Hobart, Tasmania, Australia Abstract Variations in shape, metal content, alteration mineralogy, and volcanic host rocks of the ore deposits in the two major volcanic-hosted luassive sulfide (VHMS) districts of eastern Anstralia, the Cambrian Mount Read Volcanics and the Camhro-Ordovician Mount Windsor snbprovince, strongly reflect their volcanic environ- ment, conditions of ore forination. and hvdrothermal alteration orocesses. prol,~l,lyiorn.rJ rttl~~r,I. the sed flojr r ,:, Hrllvrr Qltc lli\.er or hy rcpl~crmrntof pun,~tsvolcnnicl~snc IIU,,+, Jirrzdv Irlo\r. thr s,u f.wr T e., H,n.l,cn . The, iounrull ulrrrdi<)n ~cs,ci~rrdunh rhccr .nolvmrtrlllc . \'HhlS Jc~>u\ltsu,n\ controllrd I.! hoit-rock pc;lllc.~l,rl~ty.r~d iroro\tty which arc it1 turn rr!,t+d n) n)lcxn>c Cicirs r\pv deucr oiir~zu.nl.c.111d ~\?.voI~.t~~iz~~u~r~trnl nrchitccturc Fucustneof llvurotllrrrnulfluids ihlno synvold&c sGctures has resurted in well-zoned chlorite-sericite footwall aheracon p;pes within footwall la"; at Hellyer. On the other hand, diffnse fluid flow through veIy thick pninice breccia at RosebeIy and Hercules has resulted in strata-hound, sericite-dominated footwall alteration zones parallel to the paleosea floor and the ore lenses. Massive and disseininated, pyitic Cu-Au deposits, such as those in the Mount Lyell field and at Highway- Reward. formed by subsea-floor replacement and are associated with only minor nnc-lead massive sulfide ore. These deposits formed from higher temperature fluids (>30OeC),in which copper transport is enhanced, and are commonly located in felsic volcanic centers do~nh~atedby shallow porphyitic intrusions (e.g., Highway- Reward). The Cn-An ore lenses may be strata-bound (e.g., Mount Lyell) or crosscutting pipes (e.g., Highway- Reward) depending on the structure and permeability characteristics of the felsic volcanic host rocks. The pres- ence of high-sulfidation alteration minerals (e.g., pyrophyllite, zunyite) in some of the Cu-An deposits (e.g., Mount Lyell field) indicates that fluids were relatively acidic and snggests the possibility of magmatic fluid input into the hydrothemal system. Alteration zonation associated with the Cu-An VHMS deposits is more symmetrical than that of the Zn-rich deposits, with sericite-rich alteration extending into the hanging wall, in keeping with the subsnrface replacement origin of these de osits Synvolcanic gold-rich deposits, with high gold/base met J ratlos.' are less common than the Cu-Au and Zn- rich VHMS ore types. The gold-rich ores (e.g., Henty, South Hercules) are strata bonnd in nature, have low sulfide contents, and are associated with central zones of intense silicification, surrounded hy envelopes of sericite-pyite and carbonate alteration. Volcanological and geochemical studies at Hen? indicate the gold-rich ore formed by the replacement of particular volcanic units deposited in a relatively shallow water environment dominated by volcaniclastic facies, lavas, and limestones. This spectrum of Cu-Au, Zn-rich, and Au-only deposits in the Mount Read Volcanics and the Mount Wind- sor subprovince is interpreted to represent a continunm from classic sea-floor VHMS ores toward those with features more akin to porphry Cu-Au and cpithermal An-Ag deposits. This spectrum relates to the inte~play between factors in the snbn~arinevolcanic environment and the character of the hydrothermal fluid as follows: (1)proportions of volcaniclastic, lava, and subvolcanic intrusive facies; (2)depth of seawater; (3) permeability and porosity of volcanic host rock;; (4) balance behveen magmatic components and seawater components in the ore fluid; and (5) temperature and acidity of the ore fluid. Mineralogical, lithogeochemical, and isotopic studies have revealed a range of alteration vectors usefnl in exploration for both the Zn-rich and Cu-An VHMS deposits. Carbonate and white mica compositional varia- tions are highlighted as important mineralogical vectors; thallium and antimony halos may be nseful trace element vectors; and oxygen and sulfur provide important isotope vectors toward the center of the hydro- thermal system. Introduction Oueensland, contain a range of base metal and gold-bearing THETWO principal submarine volcanic successions in Aus- sulfide deposits (Table 1). fhe aims of this paper >e to bliefl; tralia that host volcanic.hosted massive sulfide (VHMS) de. review the geological features, volcanic environments, and posits, the Cambrian Morlnt Read Volcanics in Tasmania and genesis the 'pectNm of svlesand, based On the the ~~~b~~.~~d~~~~~~M~~~~ windsor subpro~ncein contributions to this special issue, to compare their patterns of hydrothermal alteration. From this analysis we propose a 'Corresponding author: e-mail. Ross.LargeOutas.edu.au selies of alteration vectors useful for minerd explo;ati&n ayr leql pm rgmo18 punour alqeua oj asuap ooj sem pmU alo aql jkyr isa%ans 04 aauappa uo!snlau? p!nu pas" 'pueq raqo aql uo '(6661) M~ZU!TI pue uouro~os.(ca61) .I" $9 a$up[a Xq s~!sodapoyolnx dueur loj paquasap jeq+ 0%uo!qsej lel!ur!s e u! '8u~ugaiauoz puuaqlo~pXqXq padolahap uogeuoz Iejaur q~m\'uo!ssardap IOOU-ease u! punour e se mar% Xpoqaro aprjIns aqsseur arp leg* papnpuoa '(~661)a81 pue nam -"a3 PU" (Z66I) a2187 '(9661 '6861)"qW3R '~~XII~H?V .ajeqap aIqelap!suoa jo ~aalqnsaq, uaaq seq uognlona iyodap alo pue uoqsodap aprjlns jo amleu as!said aql <IanamoH.swan puuaqjolpXq pal~o~~uoa-qnejoj ~uaae$e su!seq 1pms ro suo!ssa~dap ~oou-easu! pauuoj saJo aql leyr X~ayplparapFsuoa s! ?! sasea yroq UI .(6661 '.p ja MVZ U!Q :966I 'lnI&IVaN !@661'SaA013 pUe UOlUOpS :qf.661 'ualw '~661'a41e~ pue namura3 :1861 '.p $a uaal3 '%a) loou eas ayl niolaq jsnr 10 je pauuoj ~ad[[a~pw haqasou ~e saio aprjlns ah!ssem aql jeyr aa1B srayrom snopa~djso~ 'Iuajuoa ad -n3 ianio.[ pue en iaq8~qmoqs sasua[ 1aq8!q X~les!qde~B!~e~~s Xlan!ssaaans Xraqasou je pue sua1 alo al8u~saql u!q~m\ s! uo!leuoz aql rad[la~je q8noqjp 'FK + nv .- 4v 'UZ 'qd + n3 .- ad :uogeuoz plaur 1le~-8u@ueqoj 11ewooj ~~SSEPMOIIS sasua[ apgns an!sssm Xraqasou pue raX~[aHaql yrog '(100~ "p la ah? :ep661 'ual~v'1961 '.pja uaar3) smo~ssaur qa:~ -aa~urndagqo.4111 jo uo!ssaaans aA!suayra Xpuof2a1 ya!yl EJO do? aqj 2% sl!un a!lsep!uealon 3g~[oXq1pue 'auojspnm yqq'auojs -pues a!uea[oh paupi4-aurj jo aauanbas e u~yrwpaJaao1 'Go -10qdrom aqvaaqs e q~m\sasual a1o aj~redas91 30 sjs!suoa 'sapel8 @lam put: sa8e1qurasss pIau!ur aprjlns rq!ur!s 8mupl -no3 114noqlp 'pueq lapo aql uo 'Xraqasou .(I~OZ'uognd pue Ilamura3 :a661 'a8q pue 11amura3 :6g61 '~ny+~va~) auolspnur yayq qlm\ paaepaIa?u! jpssq mo11!d 8uj1Ia.40 '(~661'a%~el) salnalaH qmos pue pue 'sa!aej 3!)se[a~ea[on pue %he[ 37jTsapue lp~-7oojuaaw k+ua~Je saio qa!r-p102 punoq-aje~jspa$eu!mass!p pus 'plarj -aq ~a8luoaaql ie apgps an!ssem jo sua1 (j~)uoj uo![[!m 1lad7 JunoR ayj u~salo plo8-~addoaaqdd pa?eu!urassv pue 91 ale8nop a[8u!s ejo sjs!suoa j~sodaparo I~XI~HaqL .~sed an!ssem 'Xraqasou pue IaXna~se qans salo qau-au~a![[ejaur aql ur pau!ur uaaq aneq salnaraH pue Ian!U an6 je sl~sodap -X[od aA!ssem a&s-~aaqs pue sual sapnpu! (1 .2!*) sa!uea lalpurs q8noqlle 's~!sodap qap-au!z a~[pjaurXloda&s-jaaqs -[OA peau junopq aqj u! q~sodapSNHA jo mmmads ar[L pw sua~jo sa1durexa lsaq aqj ale iaX11a~pue Xraqasou sa~ue310~pean jmo~ s.ttsodap tpu-3u)z 311[~$8wfipda1fi$s-pat[s puv suq ayr u! saaJ~sodaa a10 jo urrujsadg asu+o~dq~lsraspuim .&w uadswj ~asua~sw a'l!~aaqs 6'0 ciz SO z-z a's 9'1 U~O~UO!T aou+o~dqusLOSprr!M lyy rampard ased sasusl sw ay!iaa=~s PO 69 9.1 9.8 V8 9.9 a%ue~~~ sa!uea[o~peay ~"~npo~dJSB~ sasual SN aid!&[n~ 82 691 PO PS r PC sap~a~ 13!~t~3p~poaa '2~ au!m juaun3 waqs sw ardgp~ cz PI 9.0 PP CPT L'IC Xraqasay sapqo~psaa .qq laanpard ]sea sw P~PIOB PC wz 9.0 S.L 1 I'C 'an!~~and S~!U~JIOApea8 'IN ppasop au!~ sual sw ale8~013. r.z 091 PO CI z'sr la41an n3-qd-UZ uogeoa~ snle~s was (mdd) (add) (% W) (% W) (% W) (&w) acl(l ilsodaa nV % "3 'Id uz aluuql. EXPLORATION IN SUBMARINE VOLCANIC SUCCESSIONS: EXAMPLES FROM AUSTRALIA 915 metal sulfides precipitated within a brine pod1 ponded within fig. 3) has recognized a zonation throughout the Mount Lyell a sea-floor depression. A potential problem with the brine district, from large disseminated pyrite-chalcopyrite ores at pool model for Hellyer is the source of the high-salinity ore depth (with elevated magnetite-apatite-REE), passing up- fluids. Solo~nonand Groves (2000) point out the lack of evi- ward to bomite-rich ores in a zone of intense massive and dence for evaporitic sediments in the Cambrian and Precam- vuggy silica alteration (including enargite and pyrophyllite) brian basement source region and conclude that the most below the paleosea floor, followed by an uppennost zone of likely reason for the high salinities is the presence of signifi- small, massive sulfide Zn-Pb-Cu lenses intelpreted as exhala- cant magmatic fluid iuput, as previously suggested by Khin tive sea-floor deposits.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages26 Page
-
File Size-