Thermodynamic Properties of Magnesium Oxide and Beryllium Oxide from 298 to 1,200 Ok 1

Thermodynamic Properties of Magnesium Oxide and Beryllium Oxide from 298 to 1,200 Ok 1

JO URNAL OF RESEARCH of the National Bureau of Standards- A. Physics and Chemistry Vol. 67A, No.4, July- August 1963 Thermodynamic Properties of Magnesium Oxide and Beryllium Oxide from 298 to 1,200 oK 1 Andrew C. Victor2 and Thomas B. Douglas (February 26, 1963) As a step in developin g new standards of hi gh-temperature h eat capacity and in deter­ mi ning accurate thermodynamic data fOl" simple s ubstances, t he enthalpy (heat content) relative to 273 oK, of hi gh purity fu sed magnesium oxide, MgO, and of sintered beryllium oxide, BeO, was measured up to 1,173 ole A B unsen ice calorimeter and the d rop m ethod were used. The two samples of BeO measured ha d s urface-to-volume ratios differing by a factor of 15 or 20, yet agreed with each other closely enough to preclude appreciable error attributable to the considerable surface a rea. The enthalpies found for MgO arc several percent highe r than most previously reported values. The values arc represented within t heir uncertainty (estimated to average ± 0.25 % ) by t he foll owing empirical equations 3 (cal mole- I at l' OK ) MgO : T-f ~- T-f;73 15= 10.74091'+ 1.2177(1 0- 3) 7'2 - 2.3183(10- 7) 1'3 + 2.26151 (10 5) 1'-'-3847.94. BeO: Tl ~- II;73 1 5= 11.10841'+ 7.1245(10- 4) 1'2 + 8.40705(105) 7'-1 - 5.31245(107) T-2- 5453.21. Value'S of rnthalpy, IwaL capacit.v, rntropy, a nd G ibbs free-energy function a rc tabulated from 298. 15 to 1, 200 oK. ( 1. Introduction Canada. Spectrochemical and spectrographic analyses at the Nation al Bureau or " Standards A previous paper [1] 4 has described the need for indicated that the sample contil.in ed 99 .90 weight heat-capacity standards at temperatures above the per cent MgO if the detected metallic impurities are range o/" the presen t a-aluminum oxide (corundum) assumed to be present as their highest sLable oxides standard. Enthalpy measurements on thorium (table 1) . dioxide have been presen ted [1] as a first step in the in vestigation of new materials for this purpose. TABLE 1. I mpurities in the samples The chemical stability and high melting poin ts Element a BeO M gO of MgO and B eO (3 ,000 and 2,800 oK , respectively sample 1 [2]) recommend these materials for consid eration ----------1----------- as possible heat-capacity standards. Although both A g ____________________________ _ lVeight % Weight % compounds have lower meltin g points than thorium Al _____________________________ _ ('J < 0. 001 Be ____________________________ _ 0. 007 . 004 dioxide (3 ,300 oK [2]), the lower sensitivity of their Ca __ __________________________ _ <bJ ('J Cr ___________ _________________ _ <. 001 . 025 heat capacities to the influence of common impurities Cs ____________________________ _ ('J <. 001 (because of smaller differences in atomic weights) is Cu _____________ __________ _____ _ . 001 ('J F e _______________ _____________ _ <. 001 < .001 a decided advantage. Tlle accurate knowledge of K ______ _______________________ _ . 001 .02 LL ____________________________ _ . 002 ('J the thermodynamic properties of these substances <. 00005 ('J M g ___________________________ _ (bJ over a large temperature range has added value MIl ___________________________ _ <. 00005 N a __ __________ ___ _____________ _ ('J .008 because of the very frequent occurrence of these SL ________ __ __________________ _ . 002 <. 002 materials in high-temperature reactions and installa­ . 01 . 009 tions. The results of enthalpy measurements on • The samples were also examined for th e foll owing clemen ts which were not fu sed 11g0 and on sintered BeO specim ens of two detected : As, Au, B, B ~ Bi ~ CeI, Ce, Co, Ga, Ge, TIf, In,lf) La, Mo, N b, Ni, Os, P, Pb, Pel, Pt, Rh, It u , ::ib, Sc, Sn, Sr, Ta, To, 'rh, 'ri, u, V, ,,~ Y I.-,Zn , Zr. different bulk densities are presen ted in this paper. In addition, the (ol1owing elements were undetected in BcD: Dy, l!. r , J ~ lI , Gel , lIo, Lu, Nel , P r, Rn, Rb, Re, 8m, Tb, Tm, Yb. b M ajor constituent. 2. Samples and Containers 'Not detected . The magnesium oxide sample had been fused and Two samples of beryllium oxide were used in the was transparent, clear, and colorless; it was su-pplied present study. BeO powder was pressed, fired, and by the Norton Company, of Niagara Falls, Ontario, sintered to obtain bulk densities of 2.3 g cm- 3 and 1.6 g cm - 3 (firing temperatmes of 1,800 and 1,100 °C 1 The measurements on M gO were su pporteci by th e Wright Air Development respectively). These two samples, whose densities Divisioll..J... Air Research and Dc velopl11clli ComJl1 and, United States Air Force, Wright-L'atterson Air Force J3ase, Ohio. were about 72 and 50 percent of the single-crystal 2 Present acidress: U .S. Naval Orci nance T est Station, China L ake, Calif. (X-ray) value, will hereafter be referred to il.S BeO a US ing the defin ed t hermochemi cal calorie = 4.1840 joules . • F igures in brackets indicate the literature referell ees at tbe end of tbis p aper. samples 1 and 2, respectively. Spectrochem ical 325 analyses of both samples at the BUTeau indicated T ABLE 2. R elative enthalpy of magnesium oxde " t hat they contained 99 .96 percent BeO by weigh t (table 1). In a petrographic examination, sample 1 was found to consist of approximately isometric F urn a.ce I n dividual Mean Mean tempera- enth alpy observed Calc. eq observecl- particles 25f.J. on an edge. BeO sample 2 was ob­ turc, T ]11CaSllrc- enthalpy ( I) ca.lc. served to be composed of needlelike particles esti­ lncnts b ---- ",J mated to average 10}l in length and 1f.J.2 in cross \ oJ{ cal mole- 1 cal mole-I cal molrl ca l mole-1 section. The surface-to-volume ratio of such a 373. 15_. ____ { 923.5 922.7 } 023. 1 923.6 - 0.5 particle is the same as that for a cube with an edge ISS0.3 473.1 5_. ___ ~1 { 1960.7 ] 960. 1 of 1. 5f.J.. The sintered samples of BeO used in the 1961. 1 } + 0.6 3060. 4 573.15 __ __._ { 3050.2 3059.2 enthalpy measurem ents each consisted of two cylin­ 3058. 0 } + 0.0 4194.8 ders 2 cm long and 1 cm in diameter. 4203.6 4197.5 4109. 3 - 1.8 The samples were sealed in containers of annealed 4194.0 } "'I 5375.5 pme silver preparatory to making enthalpy measm e­ "WI773 .1 5_. ____ 5371. a } 5374. 4 5369.6 + 4.8 ments [1] . BeO sample 2 lost weight during the 5376.7 873.15 __ ___ ~ { 6560.6 - 4. 1 first attempts at sealing it in its container. Further 6558.2 } 6550. 4 6563.5 973.15 ___ __ ~ { 7777. 6 - 0.9 study of the weigh t following successive h eat treat­ 7773.6 } 77 75.6 7776. 5 lO73.15 ._. __ { 9007. 5 ment and exposure to the room atmosphere showed 9000.1 } 9008.3 9005.3 + 3.0 ) t hat at least 0.3 per cent of the original sample mass 1173.l5 .. __ ~ { lO245.4 10246.0 10247. 1 - 1.1 was lost on heating to about 1,100 oK, but was lO246.6 J regain ed by the sample after cooling in a desiccator a Mol wt= 40.311 g. an d then standing in room ail' for 30 min. T ests on b Sample lnass=JO.7578 g. six specimens of thi s lower-density sample or BeO all showed the same hygroscopic behavior. Simil ar tests mado with BeO sample 1 showed no detectablo mass change. When BeO sample 2 was fina ll)~ TABLE 3. Relative enthalpy of beryllium oxide a sealed in its container its mass was the lowest attain­ able by the heat treatmen t mentioned above. It is I ndividual enthalpy M ean possible, however, that the sample was still co n­ F urnace tOlll- lllcasurCHl.cn ts observed Mean taminated by a small amount of water. perature, l' enthalpy Calc. eq (2) obser ve cl - (sa lilple I) calc. Sampl e 1 h Sampl e 2 c 3. Enthalpy Measurements 0J< cal mole- 1 cal mole-1 cal mole- 1 cal mole I caZmole- 1 323. ] 5 ~~ ___ ~ __ ~ __ { 303.6 305.6 T 11 e "chop" method and cal orimoter employed 303.9 305. 5 } 303.7 303.7 +0.0 665.5 in the enthalpy measuremen ts have been described 373.15 ~ ~ _~ __ ~_ ~ __ 665.8 } 662.2 662.6 -0.4 in detail ill a previous publication [3]. In brief, t11 e L ~~ ~~~ ~ ~ 666.6 473. 1 5~~ ___ ~ ___ __ { 1503. 1 1490.3 -0.0 method used was as follows . The sample, sealed 1500.4 1497.8 } 1501. 8 1501. 8 2457.4 in it silver container, was suspended in a silver-core 573.15 __ ___ ______ 2452.6 2453.7 2452. 7 +1.0 furnace until it Imd time to come to a constant L ~ ~~~~ ~ ~ - 2453. 3 } 673.l5 __ ~ __ ~ __ ~ __ { 3481. 6 34.79.8 .! known temperatme. It was then dropped (wilh 3477. 0 3481. 0 } 3479.3 3478.0 + 0.4 I 4558. 0 4562.2 } almost free fall) into the Bunsen ice calorimeter, 773 .l 5 _~~~~ ____ ~~ { 4555 . 1 4557.8 4559.6 -2.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    5 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us