Rice-Fields. the Relevance of Cyanobacteria in the Ecosystem

Rice-Fields. the Relevance of Cyanobacteria in the Ecosystem

Limnetica 23(1-2) 11/10/04 10:15 Página 95 95 A shallow water ecosystem: rice-fields. The relevance of cyanobacteria in the ecosystem. Eduardo Fernández-Valiente* and Antonio Quesada Departamento de Biología. Universidad Autónoma de Madrid, E-28049 Madrid, Spain * Corresponding author, tel: 34-914978186, fax: 34-914978344, email: [email protected] ABSTRACT In this paper we review the knowledge of the ecology of the largest freshwater ecosystem on Earth: the rice-fields, and in particular the rice-fields from Valencia (Spain) making a special consideration to the cyanobacteria present in this ecosystem. Rice-fields are artificial shallow aquatic ecosystems in which the land management and the agricultural practices together with the rice plant growth govern the major environmental variables affecting the aquatic biota and its relationships. Primary producers are dominated typically by macrophytic algae as Chara and cyanobacteria, both planktonic and benthic (beside the rice plants). Most rice-fields can be considered nutrient replete, since the fertilization inputs and the low ratio volume/surface make that main nutrients are typically available. Under these circumstances other environmental variables as photosynthetically active radiation availability or filtration rates and predation may explain the growth limitation of primary producers. Irradiance availability identify two periods within the cultivation cycle: when plants are short, irradiance is not limiting and some water chemistry variables (as pH, oxygen and dissolved inorganic C concentrations) change drastically as a function of the primary production; when plants are large and the canopy is intense, then irradiance is limiting and the water chemistry changes only slightly along the day. N2-fixation is a main activity in the N cycle in rice-fields, since N2-fixing cyanobacteria represent an important fraction of the aquatic biota of this ecosystem. We will discuss in detail the relevance of this process from the ecological point of view. Keywords: cyanobacteria, N2-fixation, photosynthesis, primary production, rice-fields, shallow water ecosystems, wetlands RESUMEN En este artículo revisamos el conocimiento sobre la ecología del mayor ecosistema de agua dulce de la Tierra: los arrozales, y en particular de los arrozales de Valencia (España), haciendo especial hincapié en las cianobacterias presentes en este ecosistema. Los arrozales son ecosistemas acuáticos someros artificiales en los que su gestión y prácticas agrícolas, junto con el desarrollo de la planta de arroz gobiernan las variables ambientales más relacionadas con la biota acuática incluyendo sus interrelaciones. Los productores primarios están típicamente dominados por macrófitos algales tales como Chara y por cianobacterias tanto bénticas como planctónicas, además de por las plantas de arroz. La mayoría de los arrozales se pueden considerar con exceso de nutrientes, ya que la entrada de nutrientes de origen agrícola así como la baja relación volumen/superficie hace que los principales nutrientes inorgánicos se encuentren presentes en altas concentraciones. Bajo estas circunstancias otras variables ambientales como la radiación fotosintéticamente activa o las tasas de filtración y la predación pueden explicar la limitación de crecimiento de los productores primarios. La disponibilidad de radiación permite distinguir dos periodos durante el ciclo de cultivo: cuando las plantas son bajas, la radiación no es limitante y algunas variables químicas del agua (tales como pH o las concentraciones de oxígeno disuelto o de C inorgánico disuelto) cambian drásticamente en función de la producción primaria; y cuando las plantas son altas y la sombra que producen éstas es elevada, entonces la radiación puede ser limitante y las características químicas sólo cambian ligeramente a lo largo del día. La fijación de N2 es una actividad fundamental en el ciclo del N en los arrozales, ya que las cianobacterias fijadoras de N2 representan una importante fracción de la biota acuática de este ecosistema. Discutiremos en detalle la influencia de este proceso desde un punto de vista ecológico. Palabras Clave: cianobacterias, fijación de N2, fotosíntesis, producción primaria, arrozales, ecosistemas acuáticos someros, humedales Limnetica 23(1-2): 95-108 (2004). DOI: 10.23818/limn.23.08 © Asociación Ibérica de Limnología, Madrid. Spain. ISSN: 0213-8409 Limnetica 23(1-2) 11/10/04 10:15 Página 96 96 Fernández-Valiente & Quesada RICE-FIELDS: AN AQUATIC RICE CROPPING SYSTEM ECOSYSTEM In Valencian rice-fields, as in other European Rice-fields is the most extensive freshwater aquat- rice-fields, the crop begins in mid-April with ic ecosystem on Earth with more than 1.5 million the deep placement of fertilizers under dry con- km2. In Spain rice-fields cover about 80000 ha and ditions. The usual fertilization rates are around in the area of interest for this review (Valencia) 100-150 kg N ha-1 year-1 and 20-75 kg P ha-1 about 13000 ha. Whitton et al. (1988a; 1988b; year-1. Flooding starts the first week of May and 1988c) described in a series of 5 papers the ecolo- then the seeds are sown. At the end of June there gy of deep water rice-fields from Bangladesh. is a short period of dry land, lasting ten days, More recently Roger (1996) published a compre- when pesticides and sometimes more fertilizers hensive monograph about the rice-fields, from an are applied. During July and August the fields agronomical point of view, but considering as well remain flooded, and at the beginning of the ecology of this ecosystem. European rice- September flooding stops and fields are allowed fields have not been investigated so extensively, to dry. The harvest is undertaken at the end of although some papers describe from the ecological September. In some areas, fields are flooded point of view the rice-fields from France and again during December and January for duck Spain (e.g. Minzoni et al, 1988; Forés & Comín, hunting (Quesada et al., 1995). 1992; Quesada et al., 1997) Rice-fields typically require flooding during a variable period of time. The duration and depth MAJOR ENVIRONMENTS of flooding depends upon the water availability, AND ACTIVITIES but in Spain the irrigation keeps a constant water level, (typically between 5 and 20 cm), which is Flooding and the presence of rice plants lead to the most appropriate for rice cultivation, during the differentiation of microenvironments in the about 4 months of each year. These characteris- rice-field ecosystem: floodwater, surface-oxi- tics depict the rice-fields as a peculiar aquatic dized soil, reduced soil, rice plants (submerged ecosystem in which the water layer is very shal- plants and rizosphere), plow layer and subsoil. low, but relatively constant during a fraction of These environments differ in their physical, the year, because of that, the interaction sedi- chemical and trophic characteristics. (Roger et ment-water is very important and likely plays a al., 1993). The most pertinent microenviron- major role on the biological activities. Moreover, ments for this paper are the floodwater, the the rice plant growth triggers severe shifts, mak- oxidized soil and the rice plants. The floodwa- ing rice-fields a highly dynamic ecosystem ter is a photic, aerobic environment where because of the changes in the physical and chem- aquatic communities of primary producers and ical characteristics of water and sediments that consumers recycle nutrients and provide organ- take place during the cultivation cycle. Land ic matter to the soil. Major activities in the management and agricultural practices also have floodwater includes photosynthesis and respi- an important influence over the ecological cha- ration, and photodependent biological N2 fixa- racteristics of the rice-fields, because of the tion by free-living and symbiotic cyanobacte- physical disruption of sediments, as well as ria. The floodwater is subjected to large the input of nutrients or pesticides which impair variations in irradiance, temperature, pH, O2 the natural community structure and stability, concentration and nutrient status (Whitton et favouring the dominance of rice. Finally, the har- al., 1988c; Quesada et al., 1995). The light- vest of rice represents an important export of screening effect of the rice canopy induces a biomass from the ecosystem of more than 10 rapid decrease of light reaching the floodwater. tons of organic matter per hectare and year. Light penetration is also decreased by floating Limnetica 23(1-2) 11/10/04 10:15 Página 97 Cyanobacteria of rice-fields 97 macrophytes, plankton and the turbidity result- (Whitton, 2000). Cyanobacterial flora includes ing from agronomical practices and the activity unicellular (Microcystis, Chroococcus), fila- of benthic invertebrates. Light reaching the mentous (Oscillatoria, Lyngbya, Phormidium) floodwater have a major influence on other and filamentous with heterocysts (Anabaena, variables such as temperature, O2 concentra- Nostoc, Gloeotrichia) species. Eukaryotic tion, DIC concentration and pH. algal flora includes unicellular phytoplankton- The oxidized soil layer is a photic aerobic ic (Chlorella; Cosmarium; Navicula); fila- environment, a few millimetres thick, with a mentous (Cladophora, Spirogyra, Oedo- positive redox potential. A continuous exchange gonium) and macrophytic (Chara; Nitella) takes place between floodwater and the oxidized species. Aquatic macrophytes includes sub- soil. Major activities include: aerobic decompo- merged (Hydrilla, Najas), floating

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    14 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us