Mysteries of the Smith Chart

Mysteries of the Smith Chart

Mysteries of the Smith Chart Transmission Lines, Impedance Matching, and Little Known Facts Stephen D. Stearns, K6OIK Chief Technologist TRW Firestorm Wireless Communication Products [email protected] VG – 1 Pacificon 2001 PSA-00527 — 10/21/2001 Outline ❏ Transmission Line Theory ➤ Historical development ➤ Heaviside’s rewrite of Maxwell’s theory, Telegrapher’s equations, ➤ Impedance, reflection coefficient, SWR, phase constant, and velocity factor ➤ Special facts for λ/2, λ/4, and λ/8 lossless lines ❏ The Smith Chart ➤ Bilinear complex functions ➤ Impedance and admittance coordinates (circles, circles, and more circles) ❏ Impedance Matching ➤ Why match? Impedance matching vs. conjugate impedance matching ➤ Single frequency matching ➤ Multiple-frequency and broadband matching VG – 2 Pacificon 2001 PSA-00527—10/21/2001 Part 1: Transmission Line Theory VG – 3 Pacificon 2001 PSA-00527 — 10/21/2001 Key Dates in Electrical Transmission 1830s Magnetic telegraphs - Gauss, Henry 1839 Electromagnetic telegraph - Wheatstone & Cook 1844 Telegraph in America - Morse 1850s Thousands of miles of telegraph line U.S. and Europe 1851 40-mile cable under English Channel 1855 Distributed analysis of transmission line - Lord Kelvin 1858 Transatlantic cable, project delayed by civil war 1873 Theory of electrodynamics - Maxwell 1876 Invention of telephone - Bell 1880s Vectors, vector calculus, reformulation of Maxwell’s theory, transmission line theory - Heaviside 1886 Experimental confirmation of Maxwell’s Theory - Hertz 1937 Early Smith Chart, published 1939 and 1944 - Smith VG – 4 Pacificon 2001 PSA-00527—10/21/2001 Numbers to Remember! 1.4142135623... 1.7320508075… 1.6180339887... 3.1415926535... 2.718281828459045… 2.54 299,792,458 376.7303134... VG – 5 Pacificon 2001 PSA-00527—10/21/2001 Heaviside’s Vector Formulation of Maxwell’s Theory ∂B ∇×E =− ∂t ∂D ∇×HJ = + ∂t ∇⋅D = ρ ∇⋅B0 = DE= ε BH= µ “And God said, Let there be light; and there was light.” Genesis 1:3 VG – 6 Pacificon 2001 PSA-00527—10/21/2001 Frequency Domain or Phasor Form ∇×EH =−jωµ ∇×HE =()σωε + j ∇⋅E0 = ∇⋅H0 = VG – 7 Pacificon 2001 PSA-00527—10/21/2001 Heaviside’s Telegrapher’s Equations Uniform transmission line Equivalent circuit of infinitesimal segment I(x) R∆xL∆x V(x) G∆xC∆x dV =−()()RjLIx + ω dx dI =−()()GjCVx + ω dx VG – 8 Pacificon 2001 PSA-00527—10/21/2001 Transmission Line Solution TEM Waves Traveling wave γx Vx()=Vo e Vx() Ix()= Zo Propagation constant γα=+jRjLGjC β =()() + ω + ω Characteristic impedance RjL+ ω Z = o GjC+ ω VG – 9 Pacificon 2001 PSA-00527—10/21/2001 Notations Real Parameters R = Series resistance per unit length (Ohms/meter) L = Series inductance per unit length (Henries/meter) G = Shunt conductance per unit length (Siemens/meter) C = Shunt capacitance per unit length (Farads/meter) α = Attenuation constant (nepers/meter) β = Phase constant (radians/meter) λ = Wavelength (meters) vf = Velocity factor (dimensionless) X = Reactance (Ohms) B = Susceptance (Siemens) s = Standing wave radio (dimensionless) VG – 10 Pacificon 2001 PSA-00527—10/21/2001 Notations (Cont’d) Complex Parameters Z = R + jX = impedance (Ohms) ZL = Load impedance (Ohms) Zi = Input impedance (Ohms) Z0 = Characteristic impedance (Ohms) z = Z/Z0 = r + jx = normalized impedance (dimensionless) Y = G + jB = admittance (Siemens) y = Y/Y0 = g + jb = normalized admittance (dimensionless) Γ Γ Γ = r + j i = complex reflection coefficient (dimensionless) γ = α + jβ = propagation constant (inverse meters) VG – 11 Pacificon 2001 PSA-00527—10/21/2001 Transmission Line Parameters Physical Dimensions and Material Properties d dielectric dielectric (µ, ε, σ) (µ, ε, σ) a b a a c Parameter Coax Twinlead 1 11 1 R Ω/m + πδσ πδσ a c 2 c ab µ δ µ b δ 11 −1 d L H/m ln ++ + cosh 22π aab π 22a a πσ πσ G S/m 2 b −1 d ln cosh a 2a C F/m 2πε πε b − d ln cosh 1 a 2a Where skin depth is For copper σ =×58. 107 S/m δ = 1 c πµσf 85. mm at 60 Hz c δ = VG – 12 6.6 µm at 100 MHz Pacificon 2001 PSA-00527—10/21/2001 Round Open-Wire Transmission Line Formulas d s ❏ Approximate formula ➤ Widely published by ARRL and others ➤ Accurate only for large spacings: s/d > 3 or large impedances: Z0 > several hundred ❏ Exact formula ➤ Accurate for all spacings and impedances VG – 13 Pacificon 2001 PSA-00527—10/21/2001 Comparison of Impedance Formulas Round Open-Wire Line VG – 14 Pacificon 2001 PSA-00527—10/21/2001 K6OIK Square Open-Wire Transmission Line Formula w s ❏ Excellent approximation in the range of practical interest ➤ Accurate for small spacings: 1 < s/w < 3 or small impedances: 0 < Z0 < several hundred VG – 15 Pacificon 2001 PSA-00527—10/21/2001 Round vs Square Open-Wire Lines VG – 16 Pacificon 2001 PSA-00527—10/21/2001 Optimal Characteristic Impedances Coax Ω For minimum loss Zo = 77 Ω For maximum breakdown voltage Zo = 30 Ω For minimum temperature rise Zo = 60 Ω Zo = 50 has no special significance VG – 17 Pacificon 2001 PSA-00527—10/21/2001 Reflection Coefficient and Impedance Relation at a Terminal Plane Terminal Plane Definition Ζ Ζ L O Γ L ZZ− − Γ= Lo= z 1 + + ZZLoz 1 Inverse 1 + Γ z = 1 − Γ ❏ For every terminal plane, the complex load impedance and complex reflection coefficient seen to the right give the same information for that terminal plane ❏ Question: How do Γ and z change as the terminal plane moves? VG – 18 Pacificon 2001 PSA-00527—10/21/2001 Relations Between Two Terminal Planes Input Output Terminal Terminal Plane Plane Impedance relation Ζ Ζ L O Γ L zj+ tan β l = L Ζ zi Γi 1 + jztan β l i L Cross relations Reflection coefficient relation 1 + Γ e − jl2β = L zi − jl2β 1 − Γ e − β L ΓΓ= jl2 iL e 1 + Γ e jl2β z = i L − Γ jl2β 1 i e VG – 19 Pacificon 2001 PSA-00527—10/21/2001 Velocity Factor Wavelength λ = c free space f λ = v actual f Velocity factor v λ v == actual f c λ free space VG – 20 Pacificon 2001 PSA-00527—10/21/2001 How To Measure Velocity Factor of a Line (One Way To Do It) Known length Antenna open Analyzer circuit Same length Antenna short Analyzer circuit 21πfl v = f c −Z cot −1 open Zshort VG – 21 Pacificon 2001 PSA-00527—10/21/2001 Phase Constant 22π πf β == radians/meter λ actualvc f ❏ β Phase constant and velocity factor vf give equivalent information ❏ Both can be calculated from line dimensions and material properties βωω=++Im (RjLGjC )( ) ❏ Best to measure! VG – 22 Pacificon 2001 PSA-00527—10/21/2001 How to Measure Complex Zo of A Line (One Way to Do It) Unknown or arbitrary length Antenna open Analyzer circuit Same length Antenna short Analyzer circuit =× ZZZo open short ❏ Geometric mean of two complex numbers ❏ Calculation is trivial in polar form on Smith Chart VG – 23 Pacificon 2001 PSA-00527—10/21/2001 What Special Lengths of Lossless Line Do Half wavelength, l = _/2 = ZZiL Quarter wavelength, l = _/4 Z 2 = o Zi Z L Eighth wavelength, l = _/8 = ZZio if Z L and Z o are real (resistive) VG – 24 Pacificon 2001 PSA-00527—10/21/2001 Standing Wave Ratio Easy to remember from 1 + Γ 1+ Γ s = z = 1 − Γ 1− Γ − z −1 Γ = s 1 Γ = s +1 z +1 VG – 25 Pacificon 2001 PSA-00527—10/21/2001 Part 2: The Smith Chart VG – 26 Pacificon 2001 PSA-00527 — 10/21/2001 PSA-00527 — 10/21/2001 VG – 27 0.0 —> WAV 0.49 ELENGT HS TO 0.48 WA OAD <— 0.0 0.49 RD ARD L GEN TOW ± 0.48 ER THS 180 AT 0.47 NG 170 OR ELE -170 — AV 0.47 > W 0.04 <— 60 -90 90 160 0.46 -1 0.1 0.46 0.1 85 0.04 -85 0.2 150 0.05 0.45 -150 ) IN 0.2 80 -80 /Yo DU 0.45 (-jB CTI 0.05 E VE NC RE TA AC 0.3 EP T 0.06 SC 0.1 AN 75 0 -75 U C 0.3 1 0.44 4 S E 40 0.44 E COMPONENT (G/Yo) COMPONENT (R/Zo), OR CONDUCTANCE RESISTANCE C -1 IV O 0.06 CT M U PO D N N E I N 0.07 0.4 R T 70 -70 O 0.43 ), (+ 0.4 0.43 o jX 0 Z / 1 0.07 3 / 0.2 Z 3 X o 0 -1 -j ) ( , T O N R E C 0.08 0.5 N A 65 -65 O P 0.4 0.42 A 0.5 P 2 0.08 M C O IT 0.3 I C V 120 E E -120 C S N U 0.09 A S 0.41 0.6 T C 0.41 C E 0.6 60 -60 P 0.09 A T E 0.4 A R N E C V I E 1 T 0 ( 1 I 0.1 1 + 0 0.7 C j 0.4 -1 0.5 B 0.4 A 0.7 / 0.1 P Y A o 55 -55 C ) 0.6 0.8 0.11 0.8 0.39 100 0.39 0.11 0.7 -100 0 50 -5 0.9 0.8 0.9 0.12 0.38 0.9 0.38 0.12 1.0 1.0 1.0 90 0.2 -90 0.2 45 0.4 0.2 0.2 -45 0.37 0.4 0.13 0.4 0.4 0.6 0.13 1.2 0.37 0.6 0.6 0.6 0.8 1.4 0.8 0.8 1.2 0.8 1.2 80 0.36 0.14 -80 1.0 1.0 4 0 1.0 0 0.14 -4 1.0 1.6 0.36 1.8 1.4 1.4 0.35 2.0 0.15 7 0.15 0 0 0.35 35 -7 -35 1.6 1.6 0.34 0.16 0.16 0.34 3.0 1.8 1.8 30 60 -60 -30 2.0 0.33 0.17 0.17 2.0 4.0 0.33 5.0 25 5 0 0 0.32 -5 -25 0.18 0.18 0.32 3.0 2 0.31 0 3.0 0 4 0 0.19 0 -2 0.19 -4 10 0.31 4.0 4.0 0.3 0.2 15 5.0 30 20 0.2 -15 -30 0.3 5.0 0.29 10 10 0.21 50 A S 20 N E 50 G E 10 0.21 L -10 R 2 E G 0 0 E O D F -2 T N 20 I R 0.29 A T 50 N N 0.28 E S I M C I I S F S F I E O O N C 0.22 A S N E G E L R E G E O D F R N I 0.22 E F T L N E 0.27 E C I T C I I O F F N E C O 0.23 0.28 0.26 0.24 0.25 0.23 0.27 0.24 0.26 0.25 Pacificon 2001 Complex Functions zi wi Complex Number Complex Number y (x, y) v (u, v) z = x + jy w = u + jv ( ) z f w x r u r ❏ Basic types of complex functions ➤ Global Properties – Linear – lines map to lines – Bilinear – circles map to circles ➤ Local Properties – Conformal – right angles map to right angles VG – 28 Pacificon 2001 PSA-00527—10/21/2001 Mathematical Basis of the Smith Chart z −1 Γ= A bilinear conformal + z 1 complex function (-)+rjx1 ujv+= (+)+rjx1 x v r u Right Half Interior Unit Circle Z Plane Γ Plane VG – 29 Pacificon 2001 PSA-00527—10/21/2001 PSA-00527—10/21/2001 VG – 30 Smith Chart: Impedance Coordinates x Series Reactance r=0 r=1 r=2 x=-1 x=0 x=1 r Series Resistance 0 0.0 —> WAV 0.49 ELENGT HS TO 0.48 WA OAD <— 0.0 0.4 RD ARD L 9 GEN TOW ± 0.48 ER THS 180 AT 0.47 NG 170 OR ELE -170 — AV 0.4 > W 7 0.04 <— 160 0.46

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    81 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us