Artin L-Functions

Artin L-Functions

Artin L-functions Charlotte Euvrard Laboratoire de Mathématiques de Besançon January 10, 2014 Charlotte Euvrard (LMB) Artin L-functions Atelier PARI/GP 1 / 12 Definition L=K Galois extension of number fields G = Gal(L=K ) its Galois group Let (r;V ) be a representation of G and c the associated character. Let p be a prime ideal in the ring of integers OK of K , we denote by : Ip the inertia group jp the Frobenius automorphism I V p = fv 2 V : 8i 2 Ip; r(i)(v) = vg Charlotte Euvrard (LMB) Artin L-functions Atelier PARI/GP 2 / 12 1 In the particular case K = Q : L(s;c;L=Q) = ∏ det(Id − p−sj ;V Ip ) p2Z p Definition Definition The Artin L-function is defined by : 1 L(s; ;L=K ) = ; Re(s) > 1; c ∏ −s I det(Id − N(p) jp;V p ) p⊂OK where 8 −s < det(Id − N(p) r(jp)) if p is unramified −s Ip −s I det(Id−N(p) jp;V ) = det(Id − N(p) r~(jp)) if p is ramified and V p 6= f0g : 1 otherwise and 1 r~(s¯) = r(js) jI j ∑ p j2Ip Charlotte Euvrard (LMB) Artin L-functions Atelier PARI/GP 3 / 12 Definition Definition The Artin L-function is defined by : 1 L(s; ;L=K ) = ; Re(s) > 1; c ∏ −s I det(Id − N(p) jp;V p ) p⊂OK where 8 −s < det(Id − N(p) r(jp)) if p is unramified −s Ip −s I det(Id−N(p) jp;V ) = det(Id − N(p) r~(jp)) if p is ramified and V p 6= f0g : 1 otherwise and 1 r~(s¯) = r(js) jI j ∑ p j2Ip 1 In the particular case K = Q : L(s;c;L=Q) = ∏ det(Id − p−sj ;V Ip ) p2Z p Charlotte Euvrard (LMB) Artin L-functions Atelier PARI/GP 3 / 12 Sum and Euler product Proposition Let d and d0 be the degrees of the representations (r;V ) and (r~;V Ip ). Let ai;r(p), 1 6 i 6 d be the eigenvalues of r~(jp) with ai;r(p) = 0 if 0 d < i 6 d. Then : d −s−1 −s L(s;c;L=K ) = ∏ ∏ 1 − ai;r(p)p = ∑ ac(n)n : p2Z i=1 n>1 0 In particular, jai;r(p)j = 1 for 1 6 i 6 d . Charlotte Euvrard (LMB) Artin L-functions Atelier PARI/GP 4 / 12 Properties Properties 1 We have : L(s;1G;L=Q) = z(s); where z is the Riemann zeta function. 2 For c1, c2 two characters of G, L(s;c1 + c2;L=Q) = L(s;c1;L=Q)L(s;c2;L=Q): 3 We can write : c(1) zL(s) = z(s) ∏ L(s;c;L=Q) c6=1 where zL is the Dedekind zeta function of L. Charlotte Euvrard (LMB) Artin L-functions Atelier PARI/GP 5 / 12 Examples Charlotte Euvrard (LMB) Artin L-functions Atelier PARI/GP 6 / 12 Functional equation Charlotte Euvrard (LMB) Artin L-functions Atelier PARI/GP 7 / 12 Gamma factors Definition Define : − dimV + dimV − s s − s+1 s + 1 gc(s) = p 2 Γ p 2 Γ 2 2 for every w of L above the infinite place of Q : the generator sw of G(w) = fg 2 G j r(g)(w) = wg induces an eigenspace decomposition V = V + ⊕ V − where V + and V − correspond to the eigenvalues +1 and −1 of r(sw ). Actually, + <1;sw > 1 dimV = dimV = 2 (d + c(sw )) and so − 1 dimV = 2 (d − c(sw )). Charlotte Euvrard (LMB) Artin L-functions Atelier PARI/GP 8 / 12 Artin conductor Definition Let Gi be the i-th ramification group of p above p 2 Z. Define : +¥ jG j i Gi fp(c) = ∑ codimV : i=0 jG0j Definition (Artin conductor) The Artin conductor is : f (c) = ∏ pfp(c): p2Z Charlotte Euvrard (LMB) Artin L-functions Atelier PARI/GP 9 / 12 Property We can write : − dimV + dimV − ds s s + 1 gc(s) = p 2 Γ Γ : 2 2 Functional equation Theorem s Functional equation Let Λ(s;c) = f (c) 2 gc(s)L(s;c;L=Q) be the completed Artin L-function. Then Λ(s;c) admits a meromorphic continuation to C, analytic except for poles at s = 0 and s = 1 and satisfies : Λ(1 − s;c) = W (c)Λ(s;c); with a constant W (c) of absolute value 1. Charlotte Euvrard (LMB) Artin L-functions Atelier PARI/GP 10 / 12 Functional equation Theorem s Functional equation Let Λ(s;c) = f (c) 2 gc(s)L(s;c;L=Q) be the completed Artin L-function. Then Λ(s;c) admits a meromorphic continuation to C, analytic except for poles at s = 0 and s = 1 and satisfies : Λ(1 − s;c) = W (c)Λ(s;c); with a constant W (c) of absolute value 1. Property We can write : − dimV + dimV − ds s s + 1 gc(s) = p 2 Γ Γ : 2 2 Charlotte Euvrard (LMB) Artin L-functions Atelier PARI/GP 10 / 12 The nontrivial zeroes of L(s;c) lie in the open strip fs 2 C : 0 < Re(s) < 1g. Grand Riemann Hypothesis The nontrivial zeros of Artin L-functions lie on the critical line 1=2 + it. Artin conjecture For each nontrivial irreducible character, L(s;c) is entire. Conjectures The trivial zeroes of L(s;c) occur at negative integers. Charlotte Euvrard (LMB) Artin L-functions Atelier PARI/GP 11 / 12 Grand Riemann Hypothesis The nontrivial zeros of Artin L-functions lie on the critical line 1=2 + it. Artin conjecture For each nontrivial irreducible character, L(s;c) is entire. Conjectures The trivial zeroes of L(s;c) occur at negative integers. The nontrivial zeroes of L(s;c) lie in the open strip fs 2 C : 0 < Re(s) < 1g. Charlotte Euvrard (LMB) Artin L-functions Atelier PARI/GP 11 / 12 Artin conjecture For each nontrivial irreducible character, L(s;c) is entire. Conjectures The trivial zeroes of L(s;c) occur at negative integers. The nontrivial zeroes of L(s;c) lie in the open strip fs 2 C : 0 < Re(s) < 1g. Grand Riemann Hypothesis The nontrivial zeros of Artin L-functions lie on the critical line 1=2 + it. Charlotte Euvrard (LMB) Artin L-functions Atelier PARI/GP 11 / 12 Conjectures The trivial zeroes of L(s;c) occur at negative integers. The nontrivial zeroes of L(s;c) lie in the open strip fs 2 C : 0 < Re(s) < 1g. Grand Riemann Hypothesis The nontrivial zeros of Artin L-functions lie on the critical line 1=2 + it. Artin conjecture For each nontrivial irreducible character, L(s;c) is entire. Charlotte Euvrard (LMB) Artin L-functions Atelier PARI/GP 11 / 12 Examples Charlotte Euvrard (LMB) Artin L-functions Atelier PARI/GP 12 / 12.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    17 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us