PRACTICAL APPLICATIONS OF THE CONE PENETRATION TEST A Manual On Interpretation Of Seismic Piezocone Test Data For Geotechnical Design Geotechnical Research Group Department of Civil Engineering The University of British Columbia Table of Contents TABLE OF CONTENTS TABLE OF CONTENTS ............................................................................................. I LIST OF SYMBOLS ................................................................................................VII LIST OF FIGURES ....................................................................................................X LIST OF TABLES.................................................................................................. XVI 1 INTRODUCTION ............................................................................................. 1-1 1.1 Scope......................................................................................................1-1 1.2 Site Characterization...............................................................................1-2 1.2.1 Logging Methods....................................................................... 1-2 1.2.2 Specific Test Methods ............................................................... 1-3 1.2.3 Ideal Procedure for Conducting Subsurface Investigation......... 1-3 1.2.4 Cone Penetrometer is an INDEX TOOL.................................... 1-3 1.3 General Description of CPTU .................................................................1-4 2 EQUIPMENT ................................................................................................... 2-1 2.1 CPTU Equipment....................................................................................2-1 2.1.1 Tip and Friction Sleeve Load Cell Designs................................ 2-1 2.1.2 Pore Pressure Measurements................................................... 2-2 2.1.3 Recent Developments ............................................................... 2-5 2.2 Additional sensors ..................................................................................2-6 2.2.1 Temperature.............................................................................. 2-8 2.2.2 Inclination .................................................................................. 2-8 2.2.3 Seismic...................................................................................... 2-8 2.2.4 Electrical Resistivity................................................................... 2-8 2.2.5 Other Sensors ........................................................................... 2-9 2.3 Pushing equipment .................................................................................2-9 2.3.1 On land...................................................................................... 2-9 2.3.2 Over water............................................................................... 2-11 3 PROCEDURES ............................................................................................... 3-1 3.1 Calibration Procedures ...........................................................................3-1 3.1.1 General Comments ................................................................... 3-1 3.1.2 Calibration ................................................................................. 3-1 3.1.3 Pore Pressure Calibration ......................................................... 3-4 i List of Symbols LIST OF SYMBOLS α Modulus factor or friction coefficient a Net area ratio Ab Area of pile base Af Pore pressure ratio in triaxial test AN Load transfer area behind the cone tip AT Cross-sectional area at base of cone tip B Footing or foundation width u2− u 1 Bq Pore pressure parameter qt− σ vo ch Coefficient of consolidation in horizontal direction cv Coefficient of consolidation in vertical direction CQ Correction factor for effective overburden stress level Cc Virgin compression index Cs Recompression index CRR Cyclic resistance ratio CSR Cyclic stress ratio D Grain size Dr Relative density e Void ratio E Young's modulus Eu Undrained Young's modulus, Eu = 3 Gmax at small strains E25 Young’s modulus at 25% of peak strength fs F or Fr Normalized friction ratio = x100% ()qt− σ vo fp Unit skin friction for pile fs Friction sleeve stress g Acceleration due to gravity G Shear modulus Go, Gmax Maximum shear modulus at small strains Ic Material Index IR Soil rigidity index or stiffness ratio = G/Su for undrained conditions IRD Relative Dilatancy Index Iz Strain influence factor k Hydraulic conductivity or constant kc Bearing capacity factor Kc Correction factor based on grain characteristics KM Correction factor for earthquake magnitude Ko Lateral earth pressure coefficient at rest Kσ Correction factor for effective overburden stress L2, L1 Travel path lengths LI Liquidity index LL Liquid limit, % vii List of Symbols ∆ vv mv Volumetric compressibility, , in vertical direction ∆σ′ M Drained constrained modulus = 1/mv N∆u Pore pressure factor = ∆u/su Mt Tangent (constrained) modulus N Standard penetration value, blows/ft Nc Cone factor without including overburden effect NC Normally consolidated Nk Cone factor when using qc NKT Cone factor when using qt OC Overconsolidated OCR Overconsolidation ratio q − σvot Qt Normalized tip resistance −σ uovo p′o Mean normal effective stress Pa Reference stress PI Plasticity index, % PL Plastic limit, % qc Measured cone bearing stress or tip resistance qe Effective bearing stress or tip resistance qp Unit end bearing for pile qt Tip resistance after correction for pore pressure effects qult Ultimate bearing capacity R Radius of cone Rb Ultimate base capacity Rf Friction ratio = fs/qt x 100% Rs Ultimate shaft capacity rs Unit shaft resistance rb Unit base resistance su Undrained shear strength St Sensitivity (undisturbed strength ÷ remoulded strength) t1, t2 Travel time t50 Time to 50% dissipation of pore pressure T Time factor T* Modified dimensionless Time Factor T50 Theoretical time factor for 50% consolidation U, u Pore water pressure uo Equilibrium pore water pressure, in-situ U1, or u1 Pore pressure measured on cone tip U2, or u2 Pore pressure measured just behind shoulder of cone U3, or u3 Pore pressure measured behind friction sleeve Vs Shear wave velocity Vs1 normalized shear wave velocity Vρ Compression wave velocity w Water content, Mw/Ms x 100% viii List of Symbols β Pile friction coefficient ∆ Change in ∆p Net footing pressure or pressure increase ∆u u-uo, excess pore pressure φ’ Friction angle in terms of effective stress φ’crit Effective friction angle at critical state φ’cv Effective friction angle at constant volume φ’ss Effective friction angle at steady state φ’peak Peak friction angle ρ Settlement ρ Mass density γ Unit weight of soil σ Total normal stress σ′ Effective normal stress = σ - u σθ Circumferential stress σ′ho Effective horizontal stress σ′mf Normal stress on failure plane σ′mo Mean effective normal stress σr Radial stress σ′r In-situ radial effective stress σvo Total overburden stress σ′vo Effective overburden stress τ Shear stress τf Shear stress at failure ψ State parameter ix List of Figures LIST OF FIGURES Figure Page Figure 1-1 Terminology regarding the Cone Penetrometer ................................ 1-4 Figure 2-1 Cone Designs: (a)Tip & Sleeve in compression, (b)Tip in Compression and Sleeve in Tension, (c)Subtraction Cone (after Lunne et al, 1997) ............................................................................. 2-2 Figure 2-2 Hogentogler Piezocone Designs ....................................................... 2-3 Figure 2-3 Face Pore Pressure comparison between Polypropylene and Ceramic Filters, two soundings each in dense silty sand (Gillespie 1990) ................................................................................. 2-4 Figure 3-1 Typical Load Cell – Pressure Transducer Calibration Curve with Exaggerated Non-Linearity to Define Terms ..................................... 3-2 Figure 3-2 Simple CPTU Pressure Calibration Chamber.................................... 3-5 Figure 3-3 U.B.C. CPTU showing tip design to relocate porous filter (U1 and U2) and allow easy saturation with Glycerin (Campanella et al., 1983) ........................................................................................... 3-7 Figure 3-4 Effect of Entrapped Air on Pore Pressure Response in CPTU in Very Soft Silty Clay (Campanella and Robertson, 1981)................... 3-8 Figure 3-5 Effect of Load Release on Dissipation Response.............................. 3-9 Figure 4-1 Influence of Unequal End Areas (After Campanella et al. 1982) ....... 4-2 Figure 4-2 Determination of AN/AT for Two Types of CPTU Probes (After Battaglio and Maniscalco 1983) ........................................................ 4-2 Figure 4-3 Measured U1, U2 and U3 pore pressures in a Normally Consolidated Silt (McDonald Farm, Vancouver)................................ 4-5 Figure 4-4 Conceptual Pore Pressure Distribution in Saturated Soil During CPT Based on Field Measurements (After Robertson et al. 1986a) ............................................................................................... 4-6 Figure 4-5 U1 and U2 Pore Pressure Response in an Overconsolidated Clay 4-7 Figure 4-6 Recommended arrangements for presentation of data (Campanella and Robertson 1982) ................................................. 4-12 x List of Figures Figure 4-7 CPTU Profile at Pile Research Site, Richmond, BC with UBC preferred units (Gillespie 1990) ......................................................
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages235 Page
-
File Size-