Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2013 Pre-fabricated speech formulas as long-term memory solutions to working memory overload in routine language Hartmann, Claudio Abstract: Pre-fabricated speech formulas are retrieved holistically from long-term memory and thus save working memory (WM) resources. In order to grasp this established hypothesis in its entirety the current research, in a first step, builds theoretical foundations to explain a) the implications ofspeech production from visual stimuli for WM load, b) which elements of speech production that require WM resources are affected, and c) how semi-productive speech formulas operate so that also novel content can be packed into pre-fabricated form. Sports commentary provides excellent natural speech data to test the hypothesis, as it combines two different speech modes: 1) PLAY-BY-PLAY COMMENTARY -a highly WM resource demanding, time- pressured and activity-tied dual task of narrating the live events and 2) COLOR-COMMENTARY - non- activity-tied, unpressured free speech. More important, previous studies on sports commentary attest PLAY-BY-PLAY high formulaicity and COLOR-COMMENTARY almost none. A linguistic analysis of pausing, output quality and output rate as indicators of WM over- load in speech production for each mode is conducted in six transcriptions of live television coverage of basketball games. The results provide evidence that, despite the high WM resource demanding nature of play- by-play, the frequent use of semi-productive speech formulas allows play-by-play to show fewer characteristics of WM load in comparison to a) the color-commentary control data and b) language in experimental settings of speech production under increased WM load in the existing literature. Prä- fabrizierte Sprachformulae werden holistisch aus dem Langzeitgedächtnis abgerufen und schonen somit die Ressourcen des Arbeitsgedächtnisses (AG). Um diese Hypothese in ihrer Ganzheit zu verstehen wer- den vorerst theoretische Grundlagen erarbeitet, um a) die Auswirkungen einer Transformation visueller Stimuli in gesprochene Sprache auf das AG zu erklären, b) zu zeigen, wozu welche Elemente der Sprach- produktion AG-Ressourcen benötigen und c) wie semi-produktive Sprachformulae funktionieren, dass selbst neuer Inhalt in präfabrizierte Form gebracht werden kann. Sportkommentar ist eine exzellente Datenquelle natürlicher Sprache für die Überprüfung der Hypothese, da zwei unterschiedliche Sprach- modi kombiniert werden: 1) PLAY-BY-PLAY - Kommentieren der live Ereignisse unter Zeitdruck und 2) COLOR-COMMENTARY - nicht Ereignis gebundenes, freies Sprechen ohne Zeitdruck. Studien über Sportkommentar attestieren PLAY-BY-PLAY starke und COLOR- COMMENTARY praktisch keine For- mulaizität. Eine linguistische Analyse von Sprechpausen, Sprachqualität und -tempo als Indikatoren der Sprachproduktion unter erhöhter AG-Belastung in sechs Transkriptionen von TV-übertragenen Basket- ballspielen zeigt, dass PLAY-BY-PLAY, trotz seiner AG-Ressourcen beanspruchenden Natur, durch die häufige Verwendung von semi-produktiven Sprachformulae weniger Charakteristiken von AG-Belastung zeigt als a) die Vergleichsdaten des COLOR-COMMENTARY und b) die Sprache unter erhöhter AG- Belastung in Experimentalsituationen aus bestehender Literatur. Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-164309 Dissertation Published Version Originally published at: Hartmann, Claudio. Pre-fabricated speech formulas as long-term memory solutions to working memory overload in routine language. 2013, University of Zurich, Faculty of Arts. 2 Pre-fabricated Speech Formulas as Long-term Memory Solutions to Working Memory Overload in Routine Language Thesis presented to the Faculty of Arts of the University of Zurich for the degree of Doctor of Philosophy by lic. phil. Claudio Hartmann of Schiers / Graubünden Accepted in the spring semester 2013 on the recommendation of Prof. em. Dr. Udo Fries and Prof. Dr. Daniel Schreier Zurich, 2013 "If the brain were simple enough for us to understand, we would be too simple-minded to understand it." Anonymous Sidney Lamb 1999, Chapter 16 This doctoral thesis is supported by a research grant from the Forschungskredit of the University of Zurich - CONTENTS - FIGURES ......................................................................................................................................... VI TABLES ......................................................................................................................................... VIII ACKNOWLEDGEMENTS ..................................................................................................................... IX INTRODUCTION 1 PREFACE ............................................................................................................................ 10 1.1 Abstract ................................................................................................................... 10 1.2 Motivation ................................................................................................................ 10 1.3 Aim and scope of the research ............................................................................... 11 1.4 Hypotheses in brief ................................................................................................. 13 1.5 Chapter overview .................................................................................................... 14 2 SPEECH FORMULA PERSPECTIVES ....................................................................................... 18 2.1 Introduction ............................................................................................................. 18 2.2 Fields of research with an interest in formulaic language ....................................... 18 2.3 Determining the terminology ................................................................................... 20 2.4 Locating the current research ................................................................................. 23 2.4.1 Fixed speech formulas ............................................................................... 27 2.4.2 Semi-productive speech formulas .............................................................. 28 2.4.3 The decision for semi-productive speech formulas .................................... 29 2.5 Summary ................................................................................................................. 31 THEORETICAL FOUNDATIONS 3 FROM VISUAL STIMULI TO SPOKEN WORDS .......................................................................... 32 3.1 Introduction ............................................................................................................. 32 3.2 Vision as lead-in process ........................................................................................ 32 3.2.1 Non-verbal input ......................................................................................... 33 3.2.2 Dynamic domain description ...................................................................... 34 3.3 Core processes from conceptual preparation to articulation .................................. 35 3.4 The role of memory ................................................................................................. 37 3.4.1 Memory in dynamic domain description ..................................................... 38 3.4.2 Information activation from stimuli .............................................................. 40 3.4.3 Prototypicality ............................................................................................. 43 3.5 Summary ................................................................................................................. 45 II 4 WORKING MEMORY OVERLOAD ........................................................................................... 46 4.1 Introduction ............................................................................................................. 46 4.2 Defining working memory: two sample models ...................................................... 46 4.2.1 Alan Baddeley's multi-component model ................................................... 47 4.2.2 Nelson Cowan's embedded-processes model ........................................... 48 4.2.3 Discussion .................................................................................................. 50 4.3 Theoretical consensus across working memory studies ........................................ 51 4.3.1 Basic mechanisms and representations of working memory ..................... 52 4.3.2 Control and regulation of working memory ................................................. 54 4.3.3 The role of working memory in complex cognitive tasks ............................ 56 4.4 Capacity limitations of working memory ................................................................. 58 4.4.1 Different capacities for different aspects of working memory ..................... 58 4.4.2 Capacity limits of the focus of attention ...................................................... 59 4.4.3 Capacity limits of the activated long-term memory .................................... 61 4.4.4 Chunking as solution to capacity limits ....................................................... 63 4.5 Summary ................................................................................................................
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages219 Page
-
File Size-