Lane Detection for DEXTER, an Autonomous Robot, in the Urban Challenge

Lane Detection for DEXTER, an Autonomous Robot, in the Urban Challenge

Lane Detection for DEXTER, an Autonomous Robot, in the Urban Challenge by SCOTT MCMICHAEL Submitted in partial fulfillment of the requirements For the degree of Master of Science Thesis Adviser: Dr. Wyatt Newman Department of Electrical Engineering and Computer Science CASE WESTERN RESERVE UNIVERSITY May 2008 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of _____________________________________________________ candidate for the ______________________degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. Table of Contents Table of Contents ................................................................................................................ 2 Table of Figures ................................................................................................................... 6 1 ‐ Abstract .......................................................................................................................... 8 2 ‐ Introduction ................................................................................................................... 9 3 ‐ Background .................................................................................................................. 11 4 ‐ Hardware Platform ...................................................................................................... 14 4.1 ‐ DEXTER .................................................................................................................. 14 4.2 ‐ Cameras ................................................................................................................. 16 4.3 ‐ Laser Scanners ....................................................................................................... 19 4.4 ‐ Infrared Cameras ................................................................................................... 20 4.5 ‐ Computers ............................................................................................................. 21 5 ‐ Software Architecture .................................................................................................. 22 5.1 ‐ Overview ............................................................................................................... 23 5.2 ‐ Lane Detection System .......................................................................................... 25 5.2.1 ‐ Sensor Fusion Theory ..................................................................................... 26 5.2.2 – Steering Command Chain .............................................................................. 28 6 ‐ Road Detection Modules ............................................................................................. 29 6.1 ‐ Rake Edge Detector ............................................................................................... 31 2 6.2 ‐ Color Roadbed Detector ....................................................................................... 31 6.3 ‐ Texture Road Detector .......................................................................................... 33 6.4 ‐ Side Camera Road Detectors ................................................................................ 33 6.5 ‐ LIDAR Road Detector ............................................................................................. 34 7 ‐ Edge Crawler ................................................................................................................ 34 7.1 ‐ Curve Extraction .................................................................................................... 35 7.2 ‐ Curve Filtering ....................................................................................................... 37 7.2.1 ‐ Simple Filtering ............................................................................................... 38 7.2.2 ‐ Curve Breakup ................................................................................................ 38 7.2.3 ‐ Curve Fit Filtering ........................................................................................... 40 7.2.4 ‐ Expectation Filtering ....................................................................................... 41 7.3 ‐ Confidence Estimation and Formatting ................................................................ 43 8 ‐ Road Tracker ................................................................................................................ 43 8.1 ‐ Get Context Information ....................................................................................... 44 8.2 ‐ Line Tracking ......................................................................................................... 46 8.2.1 ‐ Line Input ........................................................................................................ 46 8.2.2 ‐ Line Maintenance ........................................................................................... 46 8.2.3 ‐ Line Merging ................................................................................................... 47 8.3 ‐ Line Identification ................................................................................................. 49 3 8.4 ‐ Centerline Estimation ............................................................................................ 53 9 ‐ Lane Observer .............................................................................................................. 55 9.1 ‐ Map Query Sequence ............................................................................................ 55 9.2 ‐ Sensor Filtering ...................................................................................................... 57 9.3 ‐ Source Selection .................................................................................................... 59 10 ‐ Test Site Performance ................................................................................................ 64 10.1 ‐ Case Quad ........................................................................................................... 64 10.2 ‐ Squire Valleview Farm ......................................................................................... 68 10.3 ‐ Beachwood .......................................................................................................... 69 10.4 ‐ Plumbrook ........................................................................................................... 70 10.5 ‐ National Qualifying Event ................................................................................... 77 11 ‐ Analysis and Future Work .......................................................................................... 80 11.1 ‐ Edge Crawler ....................................................................................................... 80 11.2 ‐ Road Tracker ....................................................................................................... 82 11.3 ‐ Lane Observer ..................................................................................................... 84 11.4 ‐ Future Development ........................................................................................... 85 12 ‐ Conclusions ................................................................................................................ 86 13 ‐ Appendices ................................................................................................................. 87 Appendix A – Common Algorithms ............................................................................... 87 4 A1 ‐ Line Fit Difference Calculation ........................................................................... 87 A2 ‐ Polynomial Fitting............................................................................................... 87 A3 ‐ Line Fit Merging .................................................................................................. 87 A4 ‐ RANSAC Line Fit .................................................................................................. 91 A5 –Path Divergence Detection ................................................................................. 93 Appendix B – Sensor Calibration ................................................................................... 93 Appendix C – Coordinate Frames .................................................................................. 95 Appendix D – Position Shift Steering............................................................................. 97 14 ‐ References ............................................................................................................... 100 5 Table of Figures Figure 1 ‐ DEXTER as received by Team CASE.. ................................................................. 14 Figure 2 ‐ DEXTER as it competed in the National Qualifying Event.. .............................. 16 Figure 3 – Lane detection sensor diagram. ....................................................................... 18 Figure 4 ‐ Computer usage by the lane detection system. ............................................... 22 Figure

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    108 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us