Experimental Investigation for Diquark Degrees of Freedom in a Charmed Baryon at J-PARC

Experimental Investigation for Diquark Degrees of Freedom in a Charmed Baryon at J-PARC

Experimental investigation for diquark degrees of freedom in a charmed baryon at J-PARC T. N. Takahashi for the J-PARC E50 collaboration Research Center for Nuclear Physics (RCNP) Osaka University MENU2016 at Kyoto 1 / 24 Contents Physics motivation Diquark correlation Experiment I J-PARC High-momentum beam line I E50 spectrometer system I Expected spectrum Summary 2 / 24 Physics motivation Fundamental building blocks of QCD = quarks and gluons Hadron dynamics : constituent quark I ground state I nuclear force excited states, exotic resonance I not well described by constituent quark model diquark as effective degrees of freedom 3 / 24 Quark correlation q q ρ qq λ Q q color-spin interaction between quarks / 1/mi mj 3 light diquark pairs ) difficult to distinguish Heavy Q ) separate to Q and q − q We will investigate the diquark correlation by measurement of charmed baryon’s properties Level structure Production rate Decay branching ratio 4 / 24 Schematic level structure of heavy baryons λ/ρ modes Heavy quark spin doublet (~sHQ ~jrest) for jrest>0 I Heavy quark symmetry ) smaller mass splitting (or degeneracy) of doublet spin-spin isotope shift interaction q q ρmode ρ q-q Q q λmode q-q λ Q G.S. 5 / 24 Production * π− D − D* q:momentum transfer p + Yc t-channel dominant λ mode excitation at forward angles one-step reaction 6 / 24 Production (2) L=0 L=1 L=2 − − + + Simulation 1/2 3/2 5/2 3/2 (?) (2625) (2595) (2880) c c c @ 1 nb Λ Λ Λ c Λ (2940) c Λ (2800) c (2520) Σ c (2455) Σ c Σ 1:2 3:2 The production rates are determined by the overlap of the wave function of initial and final states. momentum transfer ) orbital excitation Heavy quark doublet I spin/parity ) relative ratio 7 / 24 ∗ Yc Decay pattern Two decay patterns for two-body decay ∗ ! π Yc + Yc ∗ ! Yc D + N ρ mode λ mode Σc π D N qqQ qq Qq qqq ΓπΣc > ΓND ΓπΣc < ΓND − ++ p + D0 π + Σc π+ 0 + Σc 8 / 24 J-PARC E50 experiment Missing mass measurement K+ & π− :2–16 GeV/c 0 + Slow πs−: 0.5–1.7 GeV/c − *− D K π D − π Decay measurement − ± πs π &p: 0.2–4.0 GeV/c π+ p *+ p Λc OR 0 0 Σc D − ∗+ ∗− π + p ! Yc + D reaction Systematic measurement @ 20 GeV/c Excited states search Missing mass spectroscopy Excitation energy 0 I ∗− ! π− D D s (67.7%) 0 Production cross section I D ! K+π− (3.93%) Decay property Decay measurement ) Diquark correlation I π; ∗ p from Yc 9 / 24 Estimation of production cross section − *0 *- + π p -> ( K Λ &D Λc ) 2 10 [Regge] 0 High energy 2-body reaction based on 10 K*0Λ the Regge theory b] µ -2 [ 10 Normalized to strangeness production σ -4 *- + ) Charm production: ∼10−4 10 D Λc -6 10 1 2 4 8 s/sth No old data @ 10–20 GeV/c Assumed production cross section: σ ∼ 1 nb c.f. σ < 7 nb (BNL data) Small production cross section (expected) ) We need high-rate beam & multi-porpose spectrometer system. 10 / 24 J-PARC hadron hall High-p 11 / 24 High momentum beam line for secondary beam Sanford-Wang High intensity acceptance: 2 msr%, 132 m I × 7 π > 1.0 10 Hz (< 20 GeV/c) Prod. Angle = 0 deg. (Neg.) • 6×107 π−/spill on E50 1.0E+09 experimental target 1.0E+08 π− I Unseparated beam 1.0E+07 1.0E+06 − High resolution Counts/sec 1.0E+05 K I ∆p/p ∼0.1% (rms) 1.0E+04 pbar I Momentum dispersive optics 1.0E+03 0 5 10 15 20 method [GeV/c] Exp. Target (FF) Collimator 15kW Loss Target Dispersive Focal Point (DFP) (SM) 12 / 24 Spectrometer (Realistic design is ongoing.) 2m 13 / 24 Spectrometer (High-rate detectors) LH2-target T0 Fiber tracker Beam π- 2m 14 / 24 Spectrometer (Charmed baryon prod. and decay) PID counter K+ Fiber wall Internal TOF π- - Pole face πs detector π+ Ring Image LH2-target Cherenkov - Counter T0 π TOF wall DC - Fiber tracker Beam π Internal DC 2m 15 / 24 Spectrometer performance + 0 + Decay angle: Λc (2940) ! Σc (2455) +π Acceptance 100% acceptance I Momentum: 0.2–20 GeV/c I Anale: < 40◦ ) D∗: 50–60% I Decay particle∼80% Resolution I ∆p/p = 0:2% @ 5 GeV/c I ∗ 2 ∆MΛc = 10 MeV @ 2.8 GeV/c 16 / 24 Expected spectra Simulation (2625) (2595) (2880) c c c @ 1 nb Λ Λ Λ c Λ (2940) c Λ (2800) c (2520) Σ c (2455) Σ c Σ 13 ∼2,000 counts @ Npot = 8.64×10 (100 days, "total = 0:5) Λc (g.s.): 1 nb production cross section I Production ratio for excited states Background: simulated by JAM code. I D∗ tagging reduces B.G. by a factor of 2×106. Achievable sensitivity of 0.1 – 0.2 nb (3σ level, Γ < 100 MeV) 17 / 24 Many physics channels Main channel: Charmed baryons (Q + qq) − + ∗− π + p ! Yc + D Data rate: < 0.1 kHz Byproducts 2 Ξc baryons Ω baryons : yield = Yc × 10 I π− ! 0 ∗− + I − ! − 0 + + p Ξc + D + K K + p Ω + Ks + K − − 0∗ + 4 I K + p ! Ω + K + K Y baryons: yield = Yc × 10 I π− ! 0 0 + p Y + Ks Drell-Yan channels I π− + p ! Y 0 + K∗0 I π− + p ! n + µ+ + µ− I π− + p ! Y − + K∗+ I K− + p ! Y 0 + µ+ + µ− I π− + p ! Θ+ + K∗− ∗ K beam rate ∼1/100 3 Ξ baryons: yield = Yc × 10 I K− + p ! Ξ0 + K∗0 I − ! − ∗+ 0 π+ K + p Ξ + K :(Ks + ) I π− ! − 0 + + p Ξ + Ks + K I π− + p ! Ξ− + K∗0 + K+ 18 / 24 Strangeness Yield: 104–105/day @ 1 µb I 4 g/cm2, 6 × 107/spill (∼ 106/spill for K beam) I 50% acceptance, 50% efficiency (DAQ, PID, analysis) Y: qq + Q system @ strangeness sector I π−p ! Y ∗ + K∗0 reaction I Production ratio: qq excitation mode I Decay branching ratio: Γ(NK)/Γ(πΣ) Ξ: a + QQ system I K− + p ! Ξ∗ + K/K∗ and π− + p ! Ξ∗ + K/K∗ + K reactions I Heavier diquark (q − s, s − s) system ? I λ and ρ mode excitation interchange Ω: QQQ system I K− + p ! Ω∗ + K/K∗ + K reaction I Much simpler system: Diquark less system ? 19 / 24 Data acquisition system : free-streaming DAQ Detector Buffer, FrontEnd Electronics Load balancer local storage TOF PC Filter KEKCC PC PC RCNP ・・・ Fiber PC ・・・ spill-by-spill switch RICH PC PC DC PC 10G/40G Ethernet Monitor InfiniBand Xilinx MGT 1G/2.5G/5G/10G Ethernet PC Frontend modules Buffer PCs Filter PCs Storage Self or periodic Data accumulation Event (<0.5 GB/spill) ∼ ∼ trigger 50 GB/spill ( 250 reconstruction Local storage ∼ Gbps, 2 sec.) using CPUs and/or 30,000 ch Transferred to ! GPUs Derandomized KEKCC/RCNP ∼10GB/sec 20 / 24 Ongoing R&D works High speed and/or high performance detectors I Scintillating fiber tracker I T0 timing counter I Large RPC for TOF measurement (collaboration with LEPS2) High speed DAQ I Front-end electronics for trigger-less readout I Test bench for free-streaming DAQ • Load-balancing of CPU/GPU (collaboration with ALICE O2 project) • Fast on-line track reconstruction J-PARC High-p collaboration J-PARC E16 (talk by Y. Komatsu, 26-MNI-2-2) J-PARC E50 future Heavy Ion project at J-PARC 21 / 24 Summary Charmed baryon spectroscopy I Essential way to understand hadron structure I Diquark correlation: λ and ρ mode excitation Experiment at the J-PARC high-p beam line I Inclusive measurements by missing mass spectroscopy with multi-purpose spectrometer system I Unique information from the production measurement I Data taking of many reaction channels by high-speed DAQ Systematic study of baryons at J-PARC I Excitation energy, production, decay with strangeness sector: qq + Q, q + QQ, QQQ I pilot studies for the K10 beam line I Systematics to understand hadron structure 22 / 24 J-PARC E50 collaboration RCNP Tohoku U I S. Ajimura, H. Asano, T. Nakano, I K. Miwa H. Noumi, K. Shirotori, Y. Sugaya, Academia Sinica T.N. Takahashi, T. Yamaga I T. Sawada, C.W. Chang KEK Korea U I K. Aoki, Y. Morino, K. Ozawa I J.K. Ahn RIKEN Osaka U I Y. Ma, F. Sakuma I R. Honda Tohoku ELPH Yamagata U I T. Ishikawa I Y. Miyachi JAEA JLab I K. Tanida, Y. Ichikawa I J.T. Goetz Kyoto U I M. Naruki 23 / 24 Spectrometer (Drell-Yan) PID counter Muon detector μ+ Fiber wall Internal TOF μ- Pole face detector Ring Image LH2-target Cherenkov Counter T0 TOF wall DC - Fiber tracker Beam π Internal DC 2m 24 / 24.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    24 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us