The GSI Time Anomaly: Facts and Fiction Eserved@D = *@Let@Token

The GSI Time Anomaly: Facts and Fiction Eserved@D = *@Let@Token

The GSI Time Anomaly: Facts and Fiction Carlo Giunti INFN, Sezione di Torino, and Dipartimento di Fisica Teorica, Universit`adi Torino mailto://[email protected] Neutrino Unbound: http://www.nu.to.infn.it La Thuile 2009, 3 March 2009 Les Rencontres de Physique de La Vallee d’Aoste Results and Perspectives in Particle Physics 1-7 March 2009, La Thuile, Aosta Valley, Italy C. Giunti The GSI Time Anomaly: Facts and Fiction La Thuile 2009, 3 March 2009 1 The GSI Experiment Schematic layout of the secondary nuclear beam facility at GSI Primarybeam Productiontarget Degrader 508MeV/uSm152 1032 mg/cmBe2 731 mg/cm2 Al 400MeV/u140 Pr58+ Injectionfrom UNILAC [Litvinov et al, nucl-ex/0509019] SIS: Heavy Ion Synchrotron FRS: FRagment Separator ESR: Experiment Storage Ring C. Giunti The GSI Time Anomaly: Facts and Fiction La Thuile 2009, 3 March 2009 2 Schottky Mass Spectrometry ◮ Stored ions circulate in ESR with revolution frequencies 2 MHz ◮ At each turn they induce mirror charges on two electrodes ◮ Revolution frequency spectra provide information about q m: qB f = = ­ 2 2 m ◮ Area of each frequency peak is proportional to number of stored ions 0.06 99 Ag47+ A El q 95 45+ 59 28+ Massvalueunknown Rh Ni 84 40+ Zr A El q Massvalueknown 40 19+ K 42 20+ 78 Rb 37+ Ca 80 38+ 0.04 97 Pd 46+ Sr 101Ñd48+ 76 36+ 105Sn50+ Kr 86 41+ 88 42+ 61 29+ Nb Mo Cu 31+ 65 Ga 67 Ge32+ 0.02 57 Co 27+ 92 Ru44+ 69 33+ Intensity[arb.u.] As 0.00 50000 100000 150000 200000 250000 Frequency[Hz] [Litvinov et al, nucl-ex/0509019] C. Giunti The GSI Time Anomaly: Facts and Fiction La Thuile 2009, 3 March 2009 3 Praseodymium Promethium Cerium Neodymium C. Giunti The GSI Time Anomaly: Facts and Fiction La Thuile 2009, 3 March 2009 4 Electron Capture 140 58+ 140 58+ 59Pr ! 58 Ce + e 142 60+ 142 60+ 61Pm !60 Nd + e seen because ∆q = 0 ∆f f = ∆m m (small) + ¬ decay 140 58+ 140 57+ + 59Pr ! 58 Ce + e + e 142 60+ 142 59+ + 61Pm !60 Nd + e + e not seen because ∆q = 1 ∆f 150 kHz [Litvinov et al, PLB 664 (2008) 168] C. Giunti The GSI Time Anomaly: Facts and Fiction La Thuile 2009, 3 March 2009 5 [Litvinov et al, PLB 664 (2008) 168] C. Giunti The GSI Time Anomaly: Facts and Fiction La Thuile 2009, 3 March 2009 6 [Litvinov et al, PLB 664 (2008) 168] C. Giunti The GSI Time Anomaly: Facts and Fiction La Thuile 2009, 3 March 2009 7 dN (t) EC t (1) = N(t)= N(0) e dt EC EC dN (t) EC t (2) = (t) N(t)= (t) N(0) e dt EC EC + = EC + ¬ + loss EC(t) = EC [1 + a cos( t + )] 140 Fit parameters of 59 Pr data 2 Eq. N0 EC a DoF (1) 34.9(18) 0.00138(10) - - 107.2/73 (2) 35.4(18) 0.00147(10) 0.18(3) 0.89(1) 67.18/70 142 Fit parameters of 61 Pm data 2 Eq. N0 EC a DoF (1) 46.8(40) 0.0240(42) - - 63.77/38 (2) 46.0(39) 0.0224(41) 0.23(4) 0.89(3) 31.82/35 140 58+ 142 60+ ¦ ¦ T (59 Pr ) = 706 0 08 s T (61 Pm ) = 7 10 0 22 s i ¦ ha = 0 20 0 02 [Litvinov et al, PLB 664 (2008) 168] C. Giunti The GSI Time Anomaly: Facts and Fiction La Thuile 2009, 3 March 2009 8 Neutrino Mixing? [Litvinov et al, PLB 664 (2008) 168] Ii ! If + e e = cos SOL 1 + sin SOL 2 PROPOSED EXPLANATION: INTERFERENCE OF 1 AND 2 Initial Ion: Momentum P = 0, Energy E Õ 2 2 Massive k : Momentum pk , Energy Ek = pk + mk 2 Final Ion: Momentum pk , Energy M + pk 2M 2 2 E1 + M + p1 2M = E E2 + M + p2 2M = E 2 ∆m 2 2 2 ³ ∆E E E ∆m m m 2 1 2M 2 1 C. Giunti The GSI Time Anomaly: Facts and Fiction La Thuile 2009, 3 March 2009 9 ∆m2 ³ massive neutrino energy difference: ∆E E E 2 1 2M 2 2 5 2 ¢ ³ ³ ∆m =∆mSOL ³ 8 10 eV M 140 amu 130 GeV 16 ¢ ∆E ³ 3 1 10 eV 2 ³ ­ T = ­ 19 1s = 1 43 ∆E about 3 times larger than TGSI ³ 7s CAN INTERFERENCE IN FINAL STATE AFFECT DECAY RATE? C. Giunti The GSI Time Anomaly: Facts and Fiction La Thuile 2009, 3 March 2009 10 Interference: Double-Slit Analogy I NO INTERFERENCE NO INTERFERENCE INTERFERENCE = OSCILLATIONS INTERFERENCE νe = cos ϑν1 + sin ϑν2 F ◮ Decay rate of I corresponds to fraction of intensity of incoming wave which crosses the barrier ◮ Fraction of intensity of the incoming wave which crosses the barrier depends on the sizes of the holes ◮ It does not depend on interference effects which occur after the wave has passed through the barrier ◮ Analogy: decay rate of I cannot depend on interference of 1 and 2 µ which occurs after decay has happened ´ CAUSALITY! C. Giunti The GSI Time Anomaly: Facts and Fiction La Thuile 2009, 3 March 2009 11 Causality INTERFERENCE OF COHERENT ENERGY STATES (1 AND 2) OCCURRING AFTER THE DECAY (flavor neutrino oscillations) CANNOT AFFECT THE DECAY RATE C. Giunti The GSI Time Anomaly: Facts and Fiction La Thuile 2009, 3 March 2009 12 Cross Sections and Decay Rates are always summed incoherently over different final channels: ! µ I ! F I F F !F 1 2 = PI! = PI k k i j i entangled final state: jF = Ak Fk k i » j i µ » h j j i h j j i jF (S 1) I = Ak Fk (S 1) I = Fk S I j j i hFk S I j i ´µ hF F = 1 Ak = = È 1 2 2 j j ij jhF I j j S ½ ¼ 2 ¬ ¬ 2 È ¬ ¬ 2 j j ij jhF I ¬ ¬ S 2 £ k k j j ij h j j i jhF I F I ¬ ¬ I !F P = S = Ak k S = = È ¬ ¬ 1 2 2 j j ij jhF I k j j S 2 j j ij jhF I I F = k S = P ! k k k coherent character of final state is irrelevant for interaction probability! C. Giunti The GSI Time Anomaly: Facts and Fiction La Thuile 2009, 3 March 2009 13 Quantum Beats? ◮ GSI time anomaly can be due to interference effects in initial state ◮ Two coherent energy states of the decaying ion =µ Quantum Beats I = A1I1 + A2I2 INTERFERENCE = QUANTUM BEATS INTERFERENCE INTERFERENCE = OSCILLATIONS INTERFERENCE νe = cos ϑν1 + sin ϑν2 F ◮ Incoming waves interfere at holes in barrier ◮ Causality: interference due to different phases of incoming waves developed during propagation before reaching the barrier C. Giunti The GSI Time Anomaly: Facts and Fiction La Thuile 2009, 3 March 2009 14 Causality INTERFERENCE OF COHERENT ENERGY STATES OCCURRING BEFORE THE DECAY CAN AFFECT THE DECAY RATE C. Giunti The GSI Time Anomaly: Facts and Fiction La Thuile 2009, 3 March 2009 15 ◮ Quantum beats in GSI experiment can be due to interference of two coherent energy states of the decaying ion which develop different phases before the decay ◮ Coherence is preserved for a long time if measuring apparatus which monitors the ions with frequency 2 MHz does not distinguish between the two states ◮ 2 2 i A j i A j i jA j jA j jI(t = 0) = 1 I1 + 2 I2 ( 1 + 2 = 1) = iE1t iE2t Γt 2 ³ µ j i j i A j i Γ = Γ1 Γ2 = I(t) = A1 e I1 + 2 e I2 e 2 Γt j j ij ³ PEC(t)= jh e F S I(t) = [1+ A cos(∆Et + )] PEC e 2 2 jA jjA j jh j j ij ³ jh j j ij A 2 1 2 ∆E E2 E1 PEC = e F S I1 e F S I2 dN (t) EC Γt = N(0) [1 + A cos(∆Et + ³)] Γ e dt EC C. Giunti The GSI Time Anomaly: Facts and Fiction La Thuile 2009, 3 March 2009 16 dN (t) EC Γt = N(0) [1 + A cos(∆Et + ³)] Γ e dt EC 140 58+ 16 140 58+ ¦ ¢ ¦ ∆E(59 Pr ) = (586 0 07) 10 eV A(59 Pr ) = 0 18 0 03 142 60+ 16 142 60+ ¦ ¢ ¦ ∆E(61 Pm ) = (582 0 18) 10 eV A(61 Pm ) = 0 23 0 04 jA jjA j A 2 1 2 ◮ Energy splitting is extremely small ◮ 2 2 2 2 j jA j jA j jA j jA1 2 1 99 or 2 1 1 99 ◮ It is difficult to find an appropriate mechanism C. Giunti The GSI Time Anomaly: Facts and Fiction La Thuile 2009, 3 March 2009 17 Hyperfine Splitting smallest known energy splitting [Litvinov et al, PRL 99 (2007) 262501] 6 9 µ ∆E 10 eV = T 10 s f GHz too large to explain the GSI anomaly 16 ³ ³ ¢ TGSI ³ 7s fGSI 0 14Hz ∆EGSI = 2 TGSI 6 10 eV C. Giunti The GSI Time Anomaly: Facts and Fiction La Thuile 2009, 3 March 2009 18 16 ¢ feeling of smallness of ∆EGSI ³ 6 10 eV 12 1 12 ³ ¢ ¢ NB¨ 3 10 eV G (0 5G)=1 5 10 eV 4 ³ ¢ ∆EGSI 4 10 NB¨ C. Giunti The GSI Time Anomaly: Facts and Fiction La Thuile 2009, 3 March 2009 19 Further Developments Berkeley Experiment – arXiv:0807.0649 ◮ 142 142 142 EC: Pm ! Nd + e Pm in an aluminum foil no oscillations at a level 31 times smaller than GSI ◮ 142 142 µ Reanalysis of old Eu ! Sm + e EC data = no oscillations ◮ Differences with GSI Experiment: neutral and stopped atoms Munich Group + F.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    30 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us