Dark matter in the stars: axions and asymmetric dark matter Pat Scott Imperial College London Slides at: www.imperial.ac.uk/people/p.scott/research.html Main collaborators: Sebastian Hoof (axions), Hannah Banks, Siyam Ansari & Aaron Vincent (asymmetric DM) Pat Scott – Dec 11 2018 – IWDMS, Lisbon Dark matter in the stars: axions & ADM Outline 1 Axions Introduction GAMBIT Results 2 Asymmetric dark matter in the Sun Constant cross-sections σ(v, q): inversion of Boltzmann operator σ(v, q): Monte Carlo simulations Pat Scott – Dec 11 2018 – IWDMS, Lisbon Dark matter in the stars: axions & ADM Outline 1 Axions Introduction GAMBIT Results 2 Asymmetric dark matter in the Sun Constant cross-sections σ(v, q): inversion of Boltzmann operator σ(v, q): Monte Carlo simulations Pat Scott – Dec 11 2018 – IWDMS, Lisbon Dark matter in the stars: axions & ADM Axions according to theory The short, short version: QCD has no reason to conserve CP: α L ⊃ − S θ Ga G~ µν,a (1) QCD 8π QCD µν Promote θ to a dynamical field postulate a new U(1) symmetry (Pecci-Quinn) U(1) breaks, causes θ to relax to 0, leaves behind a pseudoscalar a – the QCD axion 2 axions: ma = ΛQCD/fa 2 ALPs: ma = Λwhatever/fa =⇒ ma and fa decoupled Pat Scott – Dec 11 2018 – IWDMS, Lisbon Dark matter in the stars: axions & ADM Axions4 111. according Axions and other to the similar PDG particles 10-6 LSW VMB (OSQAR) (PVLAS) -8 ) 10 -1 Telescopes Sun | (GeV -10 Helioscopes (CAST) γγ 10 A Horizontal Branch Stars HESS Fermi SN 1987A 10-12 Haloscopes (ADMX and others) Axion Coupling |G 10-14 KSVZ DFSZ 10-16 10-10 10-8 10-6 10-4 10-2 100 Axion Mass mA (eV) MultipleFigure stellar 111.1: Exclusion probes: plot solar for axion-like axions, particles horizontal as describedbranch in the text. stars, SN1987a,structure, for example white when dwarf two NGcooling bosons are attached to one fermion line as in axion emission by nucleon bremsstrahlung [21]. In the DFSZ model [18], the tree-level coupling coefficient to electrons is [22] Pat Scott – Dec 11 2018 – IWDMS, Lisbon Dark matter in the stars: axions & ADM sin2 β C = , (111.8) e 3 where tanβ=v u/vd is the ratio of the vacuum expectation valuev u of the HiggsfieldH u giving masses to the up-type quarks and the vacuum expectation valuev d of the Higgs fieldH d giving masses to the down-type quarks. For nucleons,C n,p have recently been determined as [11] Cp = 0.47(3) + 0.88(3)C u 0.39(2)C 0.038(5)C s − − ad − 0.012(5)C c 0.009(2)C b 0.0035(4)C t , − − − (111.9) Cn = 0.02(3) + 0.88(3)C 0.39(2)C u 0.038(5)C s − d − − 0.012(5)C c 0.009(2)C 0.0035(4)C t , − − b − in terms of the corresponding model-dependent quark couplingsC q,q= u, d, s, c, b, t. June 5, 2018 20:09 A. GAMBIT A. GAMBIT A. GAMBIT A. GAMBIT A. GAMBIT Q. And varying SM/QCD parameters within their allowed ranges? Q. And astrophysical models? Q. And dealing properly with the statistics of big (>2D) parameter spaces? Q. And redoing that for lots of different axion/ALP theories? Q. OK, so what about combining all the constraints consistently then? Pat Scott – Dec 11 2018 – IWDMS, Lisbon Dark matter in the stars: axions & ADM A. GAMBIT A. GAMBIT A. GAMBIT A. GAMBIT A. GAMBIT Q. And astrophysical models? Q. And dealing properly with the statistics of big (>2D) parameter spaces? Q. And redoing that for lots of different axion/ALP theories? Q. OK, so what about combining all the constraints consistently then? Q. And varying SM/QCD parameters within their allowed ranges? Pat Scott – Dec 11 2018 – IWDMS, Lisbon Dark matter in the stars: axions & ADM A. GAMBIT A. GAMBIT A. GAMBIT A. GAMBIT A. GAMBIT Q. And dealing properly with the statistics of big (>2D) parameter spaces? Q. And redoing that for lots of different axion/ALP theories? Q. OK, so what about combining all the constraints consistently then? Q. And varying SM/QCD parameters within their allowed ranges? Q. And astrophysical models? Pat Scott – Dec 11 2018 – IWDMS, Lisbon Dark matter in the stars: axions & ADM A. GAMBIT A. GAMBIT A. GAMBIT A. GAMBIT A. GAMBIT Q. And redoing that for lots of different axion/ALP theories? Q. OK, so what about combining all the constraints consistently then? Q. And varying SM/QCD parameters within their allowed ranges? Q. And astrophysical models? Q. And dealing properly with the statistics of big (>2D) parameter spaces? Pat Scott – Dec 11 2018 – IWDMS, Lisbon Dark matter in the stars: axions & ADM A. GAMBIT A. GAMBIT A. GAMBIT A. GAMBIT A. GAMBIT Q. OK, so what about combining all the constraints consistently then? Q. And varying SM/QCD parameters within their allowed ranges? Q. And astrophysical models? Q. And dealing properly with the statistics of big (>2D) parameter spaces? Q. And redoing that for lots of different axion/ALP theories? Pat Scott – Dec 11 2018 – IWDMS, Lisbon Dark matter in the stars: axions & ADM Q. OK, so what about combining all the constraints consistently then? A. GAMBIT Q. And varying SM/QCD parameters within their allowed ranges? A. GAMBIT Q. And astrophysical models? A. GAMBIT Q. And dealing properly with the statistics of big (>2D) parameter spaces? A. GAMBIT Q. And redoing that for lots of different axion/ALP theories? A. GAMBIT Pat Scott – Dec 11 2018 – IWDMS, Lisbon Dark matter in the stars: axions & ADM M B I T G A Pat Scott – Dec 11 2018 – IWDMS, Lisbon Dark matter in the stars: axions & ADM Modules Physics modules DarkBit – dark matter observables (relic density, direct + indirect detection) (EPJC, arXiv:1705.07920) ColliderBit – collider observables inc. Higgs + SUSY searches from ATLAS, CMS + LEP (EPJC, arXiv:1705.07919) FlavBit – flavour physics inc. g − 2, b → sγ, B decays (new channels, angular obs., theory uncerts, LHCb likelihoods) (EPJC, arXiv:1705.07933) SpecBit – generic BSM spectrum object, providing RGE running, masses, mixings, etc via interchangeable interfaces to different RGE codes (EPJC, arXiv:1705.07936) DecayBit – decay widths for all relevant SM & BSM particles (EPJC, arXiv:1705.07936) PrecisionBit – SM likelihoods, precision BSM tests (W mass, ∆ρ etc) (EPJC, arXiv:1705.07936) Each consists of a number of module functions that can have dependencies on each other +ScannerBitPat Scott –: Dec manages 11 2018 – IWDMS, stats, Lisbon samplingDark matter and in optimisation the stars: axions & ADM (EPJC, arXiv:1705.07959) Hierarchical Model Database (EPJC, arXiv:1705.07908) Models are defined by their parameters and relations to each other Models can inherit from (be subspaces of) parent models Points in child models can be automatically translated to ancestor models Friend models also allowed (cross-family translation) Model dependence of every function/observable is tracked =⇒ maximum safety, maximum reuse MSSM10catQ_mA MSSM15atQ_mA MSSM9batQ_mA MSSM25atQ_mA MSSM24atQ_mA MSSM19atQ_mA MSSM16atQ_mA MSSM11atQ_mA MSSM10batQ_mA MSSM9atQ_mA MSSM7atQ_mA MSSM30atQ_mA MSSM24atQ MSSM20atQ_mA MSSM10catQ MSSM10atQ_mA MSSM63atQ_mA MSSM25atQ MSSM20atQ MSSM19atQ MSSM16atQ MSSM15atQ MSSM9batQ MSSM30atQ MSSM30atMGUT MSSM25atMGUT MSSM20atMGUT MSSM11atQ MSSM10atQ MSSM20atMGUT_mA MSSM9atQ MSSM7atQ MSSM63atQ MSSM63atMGUT MSSM63atMGUT_mA MSSM30atMGUT_mA MSSM25atMGUT_mA MSSM10batQ MSSM63atMSUSY MSSM30atMSUSY MSSM25atMSUSY MSSM20atMSUSY MSSM20atMSUSY_mA NUHM2 MSSM30atMSUSY_mA MSSM25atMSUSY_mA MSSM63atMSUSY_mA NUHM1 CMSSM mSUGRA Pat Scott – Dec 11 2018 – IWDMS, Lisbon Dark matter in the stars: axions & ADM GeneralALP (7) 7 parameter model fa, ma,0, gaγγ , gaee , β, Tcrit, θi QCDAxion (4+4) SimpleALP (5) Free parameters: Free parameters: fa, E/N, Caee , θi fa, Λ, Caγγ , Caee , θi Nuisance parameters: Fixed parameters: ΛQCD, Tcrit, β, Ceaγγ Tcrit irrelevant, β ≡ 0 DFSZAxion-I (3+4) DFSZAxion-II (3+4) KSVZAxion (3+4) Free parameters: Free parameters: Free parameters: 0 0 fa, tan(β ), θi fa, tan(β ), θi fa, E/N, θi Nuisance parameters: Nuisance parameters: Nuisance parameters: ΛQCD, Tcrit, β, Ceaγγ ΛQCD, Tcrit, β, Ceaγγ ΛQCD, Tcrit, β, Ceaγγ Fixed parameters: Fixed parameters: Fixed parameters: E/N = 8/3 E/N = 2/3 Caee Pat Scott – Dec 11 2018 – IWDMS, Lisbon Dark matter in the stars: axions & ADM Anatomy of a GAMBIT run (EPJC, arXiv:1705.07908) User chooses a model to scan, which observables to include, and the scanning method GAMBIT constructs a dependency tree 1. Identifies which functions and inputs are needed to compute the requested observables 2. Obeys rules at each step: allowed models, allowed backends, constraints from input file, etc sigma_SI_n sigma_SD_p sigma_S Type: double Type: double Type: do Function: sigma_SI_n_simple Function: sigma_SD_p_simple Function: sigma_ → tree constitutes a directed acyclic graph Module: DarkBit Module: DarkBit Module: D capture_rate_Sun 3.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages55 Page
-
File Size-