Around the Volume Conjecture

Around the Volume Conjecture

Around the Volume Conjecture Kazuhiro Hikami Department of Mathematics, Naruto University of Education, Japan March 2009 K. Hikami (Naruto) Around the Volume Conjecture 1 / 19 Outline 1 Introduction: Volume Conjecture Volume Conjecture Colored Jones Polynomial Hyperbolic Geometry Hyperbolic Knot 2 Quantum Dilogarithm Function & Hyperbolic Geometry Partition Function Examples Figure-Eight Knot 52 Pretzel Knot 3 Mock Theta Functions Quantum Invariants for Torus Link Ramanujan Mock Theta Function A Walk Through Ramanujan’s Garden Superconformal Algebra 4 Conclusion K. Hikami (Naruto) Around the Volume Conjecture 2 / 19 Volume Conjecture 1995: Kashaev constructed knot invariant K N based on quantum dilogarithm 〈 〉 function, and proposed conjecture. 2π 3 lim log K N Vol S \ K N N |〈 〉 | = →∞ ³ ´ K : knot Vol : hyperbolic volume 2000: H.Murakami & J.Murakami proved that K N is a specific value of the 〈 〉 N-colored Jones polynomial 2πi K N JK N;q e N 〈 〉 = = ³ ´ K. Hikami (Naruto) Around the Volume Conjecture 3 / 19 Volume Conjecture 2π 2πi 3 lim log JK N;q e N Vol S \ K N N = = →∞ ¯ ³ ´¯ ³ ´ ¯ ¯ ¯ ¯ Key towards geometrical interpretation of quantum invariants. relation with classical topological invariants Outline 1 introduction to volume conjecture 2 origin of hyperbolic structure quantum dilogarithm function and ideal tetrahedron 3 torus link T(s,t) mock theta functions whose shadow is CFT character 4 related topics superconformal algebra and mock theta functions K. Hikami (Naruto) Around the Volume Conjecture 3 / 19 Colored Jones Polynomial Same knot diagrams are related by a sequence of Reidemeister Moves R I: ←→ ←→ R II: ←→ ←→ R III: ←→ Kauffman Bracket K ; 〈 〉 1 A A− = + D E ­ ® 2 2 ­ ® D A A− D 1 ⊔ = − − 〈 〉 = ­ ® ³ ´ ­ ® Jones polynomial V(K); (q A4) = w(K) V(K) A3 − K writhe : 1 : 1 = − 〈 〉 + − ³ ´ ³ ´ K. Hikami (Naruto) Around the Volume Conjecture 4 / 19 G SU(2), R N-dim rep N-colored Jones poly JK (N) = = → Colored Jones Polynomial Kauffman Bracket K ; 〈 〉 1 A A− = + D E ­ ® 2 2 ­ ® D A A− D 1 ⊔ = − − 〈 〉 = ­ ® ³ ´ ­ ® Jones polynomial V(K); (q A4) = w(K) V(K) A3 − K writhe : 1 : 1 = − 〈 〉 + − ³ ´ ³ ´ N-colored Jones polynomial (1) (2) (N 1) JK (N;q) linear combination of V ,V ,...,V − = (Jones–Wenzl projection) where V(n)(K) V n-parallel of K = K. Hikami (Naruto) ¡ Around the Volume Conjecture¢ 4 / 19 Colored Jones Polynomial Chern–Simons Theory (Witten 1989) The quantum invariant for link L aKa in 3-manifold M is =∪ L 1 Ka iS W ,..., (L) DA W (A) e R1 RL Ra = Z(M) Ãa 1 ! Z Y= K ( ) Chern–Simons action S; Wilson loop operator WR ; partition function Z M ; k 2 S Tr A dA A A A ; gauge group G = 4π ∧ + 3 ∧ ∧ ZM µ ¶ K W (A) TrR P exp A ; irreducible rep. R R = µ IK ¶ Z(M) DAeiS; quantum invariant for M = Z G SU(2), R N-dim rep N-colored Jones poly JK (N) = = → G SU(N), R fundamental rep P.T.HOMFLY poly = = → K. Hikami (Naruto) Around the Volume Conjecture 4 / 19 Hyperbolic Geometry 3D hyperbolic geometry; H3 (x,y,z,t) R4 t2 x2 y2 z2 1, t 0 = ∈ − + + + =− > © ¯ ª ¯ Poincaré model t coshξ = 2 2 2 2 2 2 x sinhξ sinθ cosϕ ds dξ sinh ξ dθ sin θ dϕ = = + + y sinhξ sinθ sinϕ ³ ´ = z sinhξ cosθ = Beltrami model X Z sinhξ sinθ cosϕ dX2 dY2 dZ2 = ds2 + + Y Z sinhξ sinθ sinϕ = 2 = Z 1 Z− coshξ sinhξ cosθ = + K. Hikami (Naruto) Around the Volume Conjecture 5 / 19 Hyperbolic Geometry Beltrami half-space model dX2 dY2 dZ2 H3 (X,Y,Z) R3 Z 0 ; ds2 + + = ∈ > = Z2 n ¯ o ¯ ¯ ∂H3 C = ∪∞ geodesics are intersections of hemisphere with vertical plane, i.e., circles/straight lines orthogonal to XY-plane Orientation preserving isometry of H3, Isom (H3) PSL(2;C); + =∼ az b a b z + ; PSL(2;C) 7→ cz d c d ∈ + µ ¶ K. Hikami (Naruto) Around the Volume Conjecture 5 / 19 Hyperbolic Geometry ideal tetrahedron ∆α,β,γ 3 every vertices of ∆α,β,γ are on ∂H α β γ π + + = dihedral angles of opposite edges are equal hyperbolic volume of ideal tetrahedron; dX dY dZ Vol ∆ , , α β γ = Z3 Ñ ¡ ¢ Z p1 X2 Y2,(X,Y) ∆ ≥ − − ∈ L(α) L(β) L(γ) = + + θ Lobachevsky function: L(θ) log 2sint dt =− | | Z0 K. Hikami (Naruto) Around the Volume Conjecture 5 / 19 Hyperbolic Geometry ideal tetrahedron ∆α,β,γ dX dY dZ Vol ∆ , , α β γ = Z3 Ñ ¡ ¢ Z p1 X2 Y2,(X,Y) ∆ ≥ − − ∈ L(α) L(β) L(γ) D(z) = + + = z z[1] z = [ ] 1 L(v) z 2 z[2] 1 z− ≃ = − 1 z[1] z[3] z[3] (1 z)− 0 1 = − Bloch–Wigner function: D(z) Li2(z) arg(1 z) log z =z ℑn +z log(1− s)· | | ( ) ∞ − Euler dilogarithm: Li2 z 2 ds = n 1 n =− 0 s X= Z K. Hikami (Naruto) Around the Volume Conjecture 5 / 19 Hyperbolic Knot hyperbolic knot K is a knot whose complement S3 \ K can be given a metric of negative constant curvature 1. 3 − 3 H /Γ is hyperbolic manifold; Γ [repr of π1(S \ K)] is discrete subgrp of PSL(2;C) non-hyperbolic knots are either torus knots or satellite knots (Thurston). K. Hikami (Naruto) Around the Volume Conjecture 6 / 19 Hyperbolic Knot hyperbolic knot K is a knot whose complement S3 \ K can be given a metric of negative constant curvature 1. − non-hyperbolic knots are either torus knots or satellite knots (Thurston). almost all hyperbolic knots K are distinguished by hyperbolic volumes 3 S \ K is decomposed into ideal tetrahedra with zi (gluing faces together); 3 Vol S \ K D(zi) = i ³ ´ X dihedral angles around every edges sum to 2π (consistency) α [ ] , , ij βij zi eij 1 i.e. zi 1 zi 1 i around edge j = i − = ± Y Y eij {1,2,3} ¡ ¢ ∈ developing map of cusp is torus whose fundamental domain is quadrilateral (completeness) K. Hikami (Naruto) Around the Volume Conjecture 6 / 19 Hyperbolic Knot A-polynomial of K deformation parameter u from complete hyperbolic structure of S3 \ K; longitude λ & meridian µ of tubular neighbour of K 3 CCGLS (1994): A-polynomial AK (ℓ,m) is SL(2;C)-character variety of π1(S \ K). ℓ m ρ(λ) ∗ , ρ(µ) ∗ = 0 1/ℓ = 0 1/m µ ¶ µ ¶ Neumann–Zagier (1985): There exists potential function ΦK (u) s.t. 1 ∂Φ v K = 2 ∂u u logm, v logℓ = = K. Hikami (Naruto) Around the Volume Conjecture 6 / 19 Hyperbolic Knot 2π 2πi 3 Volume Conjecture: lim log JK N;q e N Vol S \ K N N = = →∞ ¯ ³ ´¯ ³ ´ Generalized Volume Conjecture (Gukov,¯ H.Murakami,¯ ...) ¯ ¯ pair eb, eia is a zero locus of the A-polynomial for knot K. − ³ ´ d 1 2πi/k b lim logJK N;e = − da N,k k N/k→∞a ³ ´ = K. Hikami (Naruto) Around the Volume Conjecture 6 / 19 Figure-Eight Knot S3\ = Glue faces together to match orientation Developing map of cusp consistency & completeness 1 1 1 2 w2 1 1 w w w w 1 w − z 1 z = − µ ¶ µ − ¶ z z w z z z = ⋆Vol 2D(eπi/3) 2.02988 = = ··· K. Hikami (Naruto) Around the Volume Conjecture 7 / 19 Figure-Eight Knot 1 2 D0 D 1 4 2 D1 D1 : ⇐⇒ 3 D2 D 3 3 D 5 1 2 4 D4 : ⇐⇒ octahedron@crossing K. Hikami (Naruto) Around the Volume Conjecture 7 / 19 Quantum Dilogarithm Function Question::::::::: origin of hyperbolic geometry? Kashaev used quantum dilog at root of unity to construct K N 〈 〉 we treat quantum dilog at generic value, in integral form rather easy to study asymptotics relation with hyperbolic ideal tetrahedron & Neumann-Zagier function Quantum Dilog (Faddeev 1999) iϕx e− dx Φγ(ϕ) exp = 4sinh(γx)sinh(πx) x RZi0 + quantum discrete KdV, Volterra (Volkov) quantum Liouville theory (Ponsot–Teschner) Baxter Q-operator quantum Teichmüller space (Kashaev, Chekhov–Fock) circle packing (Bazhanov–Mangazeev–Stroganov) K. Hikami (Naruto) Around the Volume Conjecture 8 / 19 Quantum Dilogarithm Function Quantum Dilog (Faddeev 1999) iϕx e− dx Φγ(ϕ) exp = 4sinh(γx)sinh(πx) x RZi0 + Φ Φ γ duality : π2 (ϕ) γ ϕ γ = π ³ ´ 1 ϕ classical limit : Φγ(ϕ) exp Li2( e ) γ∼0 2iγ − → µ ¶ Φγ(ϕ iγ) 1 Φγ(ϕ iπ) 1 difference eq : + , + Φ ϕ Φ π ϕ γ(ϕ iγ) = 1 e γ(ϕ iπ) = 1 e γ − + − + 1 ϕ2 π2 γ2 inversion : Φγ(ϕ) Φγ( ϕ) exp + · − = − 2iγ 2 + 6 µ ³ ´¶ K. Hikami (Naruto) Around the Volume Conjecture 8 / 19 Quantum Dilogarithm Function pentagon identity: with canonical variables [p , q] 2iγ =− Φ (p)Φ (q) Φ (q)Φ (p q)Φ (p) γ γ = γ bγ b+ γ 1 qˆ1 pˆ2 Symmetric expression: By useb of Sb1,2 e 2iγb Φb (pˆb1 qˆ 2b pˆ 2) = γ + − S2,3 S1,2 S1,2 S1,3 S2,3 = momentum space; p p p p . In γ 0, | 〉 = | 〉 → 1 V(p′ p2,p1) p1,p2 S1,2 p′ ,p′ δ(p1 p2 p′ ) e− 2iγ 2− 〈 b| | 1 2〉 ∼ + − 1 · 1 1 V(p2 p′ ,p′ ) p1,p2 S− p′ ,p′ δ(p1 p′ p′ ) e 2iγ − 2 1 〈 | 1,2 | 1 2〉 ∼ − 1 − 2 · 2 π x V(x,y) Li2(e ) xy = 6 − − saddle point: ∂ ∂ V(x,y) D(1 ex) log ex V(x,y) log ey V(x,y) ℑ = − + | |·ℑ ∂x + | |·ℑ ∂y ³ ´ ³ ´ K. Hikami (Naruto) Around the Volume Conjecture 8 / 19 Quantum Dilogarithm Function S2,3 S1,2 S1,2 S1,3 S2,3 = Topology: usual interpretation of pentagon is Pachner move; a b e cf. c d f ½ ¾ 6j-symbol (Penrose, Ponzano–Regge) quantum 6j-symbol (Turaev–Viro) d b a b 1 a d a,b S c,d a,b S− c,d 〈 | | 〉 = c = c D ¯ ¯ E ¯ ¯ ¯ ¯ K.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    46 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us