4-9 Linear Code (From the Perspective of Linear Algebra)

4-9 Linear Code (From the Perspective of Linear Algebra)

4-9 Linear Code (From the Perspective of Linear Algebra) Hengfeng Wei [email protected] May 13, 2019 Hengfeng Wei ([email protected]) 4-9 Linear Code May 13, 2019 1 / 28 Hengfeng Wei ([email protected]) 4-9 Linear Code May 13, 2019 2 / 28 Q : Where is Cryptography? Hengfeng Wei ([email protected]) 4-9 Linear Code May 13, 2019 3 / 28 Col(Gn×k) = C = Nul(H(n−k)×n) Hengfeng Wei ([email protected]) 4-9 Linear Code May 13, 2019 4 / 28 (n, k, d) n : length k : # of information bits d : distance Hengfeng Wei ([email protected]) 4-9 Linear Code May 13, 2019 5 / 28 Hamming(7, 4, 3) Hengfeng Wei ([email protected]) 4-9 Linear Code May 13, 2019 6 / 28 Detect d − 1 errors ⌊ d−1 ⌋ Correct 2 errors Definition (Linear Code) Zn A linear code C of length n is a linear subspace of the vector space 2 Fn ( q ). c1 ∈ C, c2 ∈ C =⇒ c1 + c2 ∈ C { } d(C) = min d(c1, c2) | c1 ≠ c2, c1, c2 ∈ C { } = min w(c1 + c2) | c1 ≠ c2, c1, c2 ∈ C { } = min w(c) | c ≠ 0, c ∈ C Hengfeng Wei ([email protected]) 4-9 Linear Code May 13, 2019 7 / 28 Problem 8.5-19 Let C be a linear code. Show that either every codeword has even weight or exactly half of them have even weight. Parity: w(c1) + w(c2) vs. w(c1 + c2) C = Ce ∪ Co Ce ≠ ∅ co ∈ Co f : x ∈ Ce 7→ x + co ∈ Co Ce ≤ C; C = Ce ∪ Co Hengfeng Wei ([email protected]) 4-9 Linear Code May 13, 2019 8 / 28 Definition (Linear Code) An (n, k) linear code C of length n and rank k is a linear subspace Zn with dimension k of the vector space 2 . Basis: c1, c2, . , ck (n × 1) column vector ci = α1c1 + α2c2 + ··· + αkck C = Span(c1, c2, ··· , ck) Hengfeng Wei ([email protected]) 4-9 Linear Code May 13, 2019 9 / 28 Definition (Generator Matrix) A matrix Gn×k is a generator matrix for an (n, k) linear code C if C = Col(G) [ ] Gn×k = c1 c2 ··· ck G(n×k) · dk×1 = cn×1 ∈ C Hengfeng Wei ([email protected]) 4-9 Linear Code May 13, 2019 10 / 28 Problem 8.5-7 Generator matrices are NOT unique. Definition (Standard Generator Matrix) [ ] Ik Gn×k = A(n−k)×k Hengfeng Wei ([email protected]) 4-9 Linear Code May 13, 2019 11 / 28 Generator matrix for Hamming code (7, 4, 3) 1 0 0 0 0 1 0 0 0 0 1 0 G = 0 0 0 1 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 0 G · = 0 1 1 0 1 0 Hengfeng Wei ([email protected]) 4-9 Linear Code May 13, 2019 12 / 28 1 0 0 0 d 1 0 1 0 0 d2 d1 d1 0 0 1 0 d3 d2 d2 G · = 0 0 0 1 · = d4 d3 d3 1 1 0 1 p1 = d1 + d2 + d4 d4 d4 0 1 1 1 p2 = d2 + d3 + d4 1 0 1 1 p3 = d1 + d3 + d4 Each parity-check bit is a linear combination of some data bits. Hengfeng Wei ([email protected]) 4-9 Linear Code May 13, 2019 13 / 28 d1 + d2 + d4 + p1 = 0 d2 + d3 + d4 + p2 = 0 d1 + d3 + d4 + p3 = 0 d 1 d2 1 1 0 1 1 0 0 d3 0 1 1 1 0 1 0 d4 = 0 1 0 1 1 0 0 1 p 1 p2 p3 Hengfeng Wei ([email protected]) 4-9 Linear Code May 13, 2019 14 / 28 Definition (Parity-check Matrix) A matrix H(n−k)×n is a parity-check matrix for an (n, k) linear code C if C = Nul(H) rank(H) = n − k (full row rank) Each row represents a parity-check equation. H(n−k)×n · cn×1 = 0(n−k)×1 Hengfeng Wei ([email protected]) 4-9 Linear Code May 13, 2019 15 / 28 Parity-check matrices are NOT unique. Elementary Row Operations. Definition (Standard Parity-check Matrix) [ ] H(n−k)×n = A(n−k)×k | In−k Hengfeng Wei ([email protected]) 4-9 Linear Code May 13, 2019 16 / 28 Col(Gn×k) = C = Nul(H(n−k)×n) Gn×k · dk×1 = cn×1 ∈ Nul(H(n−k)×n) H(n−k)×n · Gn×k · dk×1 = 0(n−k)×1 H − × · G × (n k) n n k [ ] [ ] Ik = A(n−k)×k | In−k · A(n−k)×k = A(n−k)×k · Ik + In−k · A(n−k)×k = A(n−k)×k + A(n−k)×k = 0(n−k)×k Hengfeng Wei ([email protected]) 4-9 Linear Code May 13, 2019 17 / 28 r = c + ei r = c + (ei + ej + ··· ) Definition (Syndrome) S(r) = Hr = H(c + (ei + ej + ··· )) = H(ei + ej + ··· ) = Hei + Hej + ··· Hengfeng Wei ([email protected]) 4-9 Linear Code May 13, 2019 18 / 28 Theorem (Extracting d(C) from H) If H is the parity-check matrix for a linear code C, then d(C) equals the minimum number of linearly dependent columns of H. Hengfeng Wei ([email protected]) 4-9 Linear Code May 13, 2019 19 / 28 Theorem (Extracting d(C) from H) If H is the parity-check matrix for a linear code C, then d(C) equals the minimum number of linearly dependent columns of H. Proof. { } d(C) = min w(c) | c ≠ 0, c ∈ C Hc = 0 ∑n (ci · Hi) = 0 i=1 th Hi : the i column of H Hengfeng Wei ([email protected]) 4-9 Linear Code May 13, 2019 20 / 28 Theorem (Single Error-detecting Code (Theorem 8.31)) d(C) ≥ 2 ⇐⇒ ∀ {ci} linearly independent ⇐⇒ no zero column Theorem (Single Error-correcting Code (Theorem 8.34)) d(C) ≥ 3 ⇐⇒ ∀ {ci, cj} linearly independent ⇐⇒ no zero column, no identical columns Hengfeng Wei ([email protected]) 4-9 Linear Code May 13, 2019 21 / 28 Problem 8.5-21 If we are to use an error-correcting linear code to transmit the 128 ASCII characters, what size matrix must be used? We consider single error-correcting code. [ ] H(n−k)×n = A(n−k)×k | In−k r , n − k (k = 7) k ≤ 2r − 1 − r =⇒ r ≥ 4 H4×11 : (11, 7) code Hengfeng Wei ([email protected]) 4-9 Linear Code May 13, 2019 22 / 28 Hamming Code (wiki): General Algorithm Hengfeng Wei ([email protected]) 4-9 Linear Code May 13, 2019 23 / 28 Problem 8.5-21 If we are to use an error-correcting linear code to transmit the 128 ASCII characters, what size matrix must be used? What if we require only error detection? We consider single error-detecting code. r , n − k = 1 is sufficient : (8, 7) code Hengfeng Wei ([email protected]) 4-9 Linear Code May 13, 2019 24 / 28 Problem 8.5-23 How many check positions are needed for a single error-correcting code with k = 20? r , n − k (k = 20) k ≤ 2r − 1 − r =⇒ r ≥ 5 Hengfeng Wei ([email protected]) 4-9 Linear Code May 13, 2019 25 / 28 Problem 8.5-22 Find the standard H and G that gives the even parity check bit code with k = 3. r , n − k = 1 d1 + d2 + d3 + p = 0 1 0 0 0 1 0 G × = G × = H(n−k)×n = H1×4 = [1, 1, 1, 1] n k 4 3 0 0 1 1 1 1 Hengfeng Wei ([email protected]) 4-9 Linear Code May 13, 2019 26 / 28 Detect d − 1 errors ⌊ d−1 ⌋ Correct 2 errors Hengfeng Wei ([email protected]) 4-9 Linear Code May 13, 2019 27 / 28 Hamming(7, 4, 3) Hamming(7, 4, 3) cannot distinguish between single-bit errors and two-bit errors. Hengfeng Wei ([email protected]) 4-9 Linear Code May 13, 2019 28 / 28 Hengfeng Wei ([email protected]) 4-9 Linear Code May 13, 2019 28 / 28 Office 302 Mailbox: H016 [email protected] Hengfeng Wei ([email protected]) 4-9 Linear Code May 13, 2019 28 / 28.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    30 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us