Thermal and Mechanical Behavior of Railway Tracks Ary Vinicius Nervis Frigeri Thesis presented to the School of Technology and Management of the Polytechnic Institute of Bragan¸ca to fulfill the requirements to obtain the Master of Science Degree in Construction Engineering as part of the Double Degree Program with the Federal University of Technology - Paran´a- Campus Guarapuava Advisors Professor PhD. Manuel J. C. Minhoto Professor PhD. Paulo A. G. Piloto Professor Msc. Dyorgge A. Silva Bragan¸ca, 2021 ACKNOWLEDGMENTS This academic work is a result of direct and indirect collaboration among many institutions and people. Firstly, I thank the Federal University of Technology-Paran´a(UTFPR), campus Guarapuava, and the Polytechnic Institute of Bragan¸ca(IPB) which provided me opportunities and the right tools to conduct this research. Beyond that, I am thankful for the double degree program between the graduation courses. My advisors, Professor PhD. Manuel Minhoto, PhD. Paulo Piloto, and Msc. Dyorgge Alves for always willing to help me and clarify my questions. Professor PhD. Rodrigo Ribeiro for making possible the double degree program between the institutions. To all the Professors that have helped me during the graduation path. To the Association of Municipalities of Terra Quente Transmontana (AMTQT) and Vale do Tua Regional Development Agency (ADRVT) for providing access to the facilities and the monitoring sites of this research. Also, the Portuguese Institute for Sea and Atmosphere (IPMA), for providing weather data that have been utilized in this work. I thank my parents, Ivandra and Ari and my sister Alicia, for always being present to help me and to give support during all my years of study. Also for always helping me to overcome challenges and make decisions. Thank you also for understanding all comings and goings and the distance. Nothing would be possible without you. I also thank Mariana Schulze for being by my side since the beginning of my graduation course, always helping and collaborating. Your support was essential during this time. To all my friends that took part during this journey, always helping me to keep motivated, mainly during uncertain and turbulent times, in which company play a very important role. AGRADECIMENTOS Este trabalho acad^emico ´efruto da colabora¸c~ao de diversas institui¸c~oes e pessoas, tanto de maneira direta como indireta. Primeiramente agrade¸co`as institui¸c~oes de ensino, Universidade Tecnol´ogica Federal do Paran´a (UTFPR), campus Guarapuava e Instituto Polit´ecnico de Bragan¸ca(IPB), que me propiciaram o acesso `asoportunidades e ferramentas necess´arias para conduzir este trabalho. Mais ainda por propiciarem o acordo de dupla diploma¸c~aoentre os cursos. Aos meus orientadores, Professor Dr. Manuel Minhoto, Dr. Paulo Piloto e Msc. Dyorgge Alves por auxiliarem e estarem sempre dispostos a sanar duvidas. Ao professor Dr. Rodrigo Ribeiro por efetivar e fazer poss´ıvel o programa de dupla diploma¸c~ao entre as institui¸c~oes. A todos os professores que me auxiliaram durante a minha gradua¸c~ao. Agrade¸co`aAssocia¸c~ao de Munic´ıpios da Terra Quente Transmontana (AMTQT) e `aAg^encia de Desenvolvimento Regional do Vale do Tua por conceder acesso `asinstala¸c~oese aos locais de monitoramento desta pesquisa. Tamb´em, ao Instituto Portugu^es do Mar e Atmosfera (IPMA) por ceder dados utilizados ao longo desta pesquisa. Agrade¸coaos meus pais, Ivandra e Ari e `aminha irm~aAlicia por sempre estarem dispostos a me ajudar e dar apoio durante todos os anos de gradua¸c~ao. Por sempre me ajudarem a superar os desafios e tomar decis~oes. Obrigado por compreenderem as idas e vindas e a dist^ancia. Sem voc^es nada seria poss´ıvel. Agrade¸coa Mariana Schulze por estar ao meu lado desde o principio da gradua¸c~ao me auxiliando e sempre colaborando com minha forma¸c~ao. Seu apoio foi fundamental durante esta fase. Aos amigos que fizeram parte desta caminhada, sempre auxiliando a manter a autoestima e positividade, principalmente em tempos turbulentos e incertos, no qual a companhia tem um papel muito importante. Obrigado, tamb´em, por sempre me auxiliarem a manter a motiva¸c~aoe perseveran¸capara concluir esta etapa. There are many hypotheses in science that are wrong. That is perfectly alright; it's the aperture to finding out what's right. Science is a self- correcting process [...] (SAGAN, Carl, 1980). ABSTRACT FRIGERI, A.V.N. Thermal and Mechanical Behavior of Railway Tracks. 2021. 119 f. Master Thesis { Polytechnic Institute of Bragan¸ca. Bragan¸ca, 2021. Railways are infrastructures subject to open weather conditions and also to temperature changes during the day and over the season. Due to this change, internal stresses may appear, whether tensile or compressive depending on the stress-free temperature and the current measure. High compressive stress may lead the track to buckle, meanwhile tensile stress can cause brittle failure. Given the importance of the temperature on railways, many models have been developed to correlate weather conditions and rail temperatures, in order to avoid the occurrence of mechanical instabilities which cause major problems in the operation of railroads. The present work validates one model developed by CNU university by comparing it with finite element solutions and also with experimental data of a rail track in the city of Mirandela-Portugal. A python package was developed to solve the model and is available to download. The model shows a good correlation between measured and simulated rail temperatures. In addition, by utilizing weather information of other locations in Portugal, the maximum expected rail temperatures were determined. Furthermore, mechanical analyses were made to analyze the critical temperature to reach the buckling mode of instability without the effect of rolling loads and also the important parameters that affect this phenomenon. The simulations show that the quality of the ballast and the initial miss-alignment of the track are the most important. Keywords: Railway. Thermal Buckling. Numerical Simulation. Finite Element Analysis. RESUMO FRIGERI, A.V.N. Thermal and Mechanical Behavior of Railway Tracks. 2021. 119 f. Tese de Mestrado { Instituto Polit´ecnico de Bragan¸ca. Bragan¸ca, 2021. Caminhos de ferro s~ao estruturas expostas a uma grande variedade de condi¸c~oes clim´aticas e, concretamente a varia¸c~oes de temperatura durante o dia e ao longo das esta¸c~oes durante o ano. Devido a estas varia¸c~oes tens~oes internas ocorrem, podendo ser esfor¸cosde compress~ao ou tra¸c~ao, dependendo da temperatura neutral do perfil. A ocorr^encia de tens~oes de compress~ao elevadas pode causar encurvadura da via, enquanto que os esfor¸cos de tra¸c~aopodem ocasionar a fratura fr´agil. Devido a import^ancia das temperaturas nas vias f´erreas, muitos modelos t^em sido desenvolvidos para correlacionar condi¸c~oes clim´aticas com a temperatura da via tendo em vista o seu uso como ferramenta de preven¸c~ao de acidentes na opera¸c~ao. O presente trabalho utiliza um destes modelos, desenvolvido pela universidade CNU e valida-o utilizando solu¸c~oes com o m´etodo dos elementos finitos e, tamb´em,com dados experimentais de uma via f´errea localizada na cidade de Mirandela-Portugal. Foi ainda desenvolvido um software utilizando a linguagem Python para facilitar a solu¸c~ao do modelo, estando ainda dispon´ıvel para download. O modelo demonstrou boa correla¸c~ao entre as temperaturas simuladas e medidas. Al´emdisso, utilizando informa¸c~oes meteorol´ogicas de outras localidades em Portugal, as temperaturas m´ax- imas esperada das vias foram determinadas. Posteriormente, an´alises mec^anicas de encurvadura foram realizadas para determinar em quais temperaturas uma via ferra pode sofrer encurvadura e, tamb´em, quais par^ametros que influenciam este fen^omeno. As simula¸c~oes mostram que a qualidade do balastro e as imperfei¸c~oesiniciais da via s~ao os mais importantes. Palavras-chave: Caminhos de ferro. Ferrovias. Encurvadura T´ermica. Simula¸c~oes Num´ericas. An´alise de Elementos Finitos. LIST OF FIGURES Figure 2.1 { Usage of the words Railway and Railroad during time. Mentions relative to the corpora database. ............................ 6 Figure 2.2 { European railway network........................... 7 Figure 2.3 { North America railway network. ....................... 9 Figure 2.4 { Railways in Portugal.............................. 12 Figure 2.5 { Railway cross section. ............................ 15 Figure 2.6 { Railway profiles. ............................... 16 Figure 2.7 { Example of concrete sleepers. ........................ 20 Figure 2.8 { Rigid fastening................................. 22 Figure 2.9 { Elastic Pandrol fastening. .......................... 22 Figure 2.10{Fishplate joint................................. 24 Figure 2.11{Point of measurement............................. 26 Figure 2.12{Esveld correlation. .............................. 28 Figure 2.13{Chapman's collected data........................... 28 Figure 2.14{Chapman's simplified rail geometry...................... 31 Figure 2.15{January collected data............................. 35 Figure 2.16{July collected data............................... 36 Figure 2.17{Daily maximum temperatures correlation................... 36 Figure 2.18{Sun position and areas relation. ....................... 38 Figure 2.19{Hong simplifications.............................. 38 Figure 2.20{Hong et al. simulations - September 2016. ................. 41 Figure 2.21{Lateral buckling examples..........................
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages133 Page
-
File Size-