Differentiation regimes in the Central Andean magma systems: case studies of Taapaca and Parinacota volcanoes, Northern Chile DISSERTATION zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades "Doctor rerum naturalium" der Georg-August-Universität Göttingen im Promotionsprogramm Geowissenschaften / Geographie der Georg-August University School of Science (GAUSS) vorgelegt von Magdalena Banaszak aus Poznań/Polen Göttingen 2014 Betreuungsausschuss: Prof. Dr. Gerhard Wörner Abteilung Geochemie, Geowissenschaftliches Zentrum, Universität Göttingen Prof. Dr. François Holtz Institut für Mineralogie, Leibniz Universität Hannover Mitglieder der Prüfungskommission Referent: Prof. Dr. Gerhard Wörner Abteilung Geochemie, Geowissenschaftliches Zentrum, Universität Göttingen Korreferent: Prof. Dr. François Holtz Institut für Mineralogie, Leibniz Universität Hannover weitere Mitglieder der Prüfungskommission: Prof. Dr. Sharon Webb Abteilung Experimentelle und Angewandte Mineralogie, Geowissenschaftliches Zentrum, Universität Göttingen Prof. Dr. Andreas Pack Abteilung Isotopengeologie, Geowissenschaftliches Zentrum, Universität Göttingen Dr. Andreas Kronz Abteilung Geochemie, Geowissenschaftliches Zentrum, Universität Göttingen Dr. Klaus Simon Abteilung Geochemie, Geowissenschaftliches Zentrum, Universität Göttingen Tag der mündlichen Prüfung: 23. April 2014 II DEDICATION TO HANNAH AND NILS. III ACKNOWLEDGEMENTS This PhD thesis would not have been possible without the never-ending support and patience of my Doctor Father Gerhard Wörner. The enthusiasm he has for magmatism was contagious and motivational for me even during tough times in the PhD pursuit. I appreciate all his contributions of time and ideas funding to my experience in research and understanding andesites and dacites. I especially want to thank François Holtz Roman Botcharnikov Andreas Kronz Klaus Simon John Hora André Stechern Nils Blum-Oeste for help and jewel suggestions which immensely contributed to this thesis. IV THE MANTLE PROPOSES; THE CRUST DISPOSES. Wes Hildreth (2007) V ABSTRACT Volcanoes have shaped the Earth’s surface and are nature’s most awesome manifestation of the power within our planet (Rosaly M. Lopes). Compositional and mineralogical diversity of erupted lavas reflects distinct magma differentiation paths, resulting from magmatic processes controlled by magma sources and architecture of the Earth’s crust. A differentiation regime is a concept encompassing different magmatic conditions and mechanisms operating in subvolcanic plumbing systems during magma evolution. This study addresses the compositional and mineralogical variability of magmas erupted in the Andean Central Volcanic Zone (14°-27°S). Taapaca and Parinacota located in the Central Andes (18°S), are composite stratovolcanoes distinctive in their morphology: Taapaca represents a dacitic dome complex; Parinacota forms a symmetrical stratocone. These two characteristic effusive end-member types of the arc volcanism reflect two different magma evolutionary paths. Taapaca has erupted compositionally and mineralogically uniform dacites. In contrast, Parinacota demonstrates a large compositional variability of the erupted lavas, from basaltic andesite to rhyolite. Moreover, Parinacota experienced an edifice sector collapse, which punctuates changes in the composition of prevailing Fe-Mg silicates in the andesite lavas. Although both volcanos appear to be completely different, Taapaca and Parinacota share several characteristics such as trace element and isotopic composition, mineral chemistry, and a range of physical parameter P-T-ƒO2 during magma crystallization. Geochemical, geochemical-statistical and petrological investigations presented in this study in a connection with experimental constraints reveal one principal mechanism operating in the subvolcanic Taapaca and Parinacota systems: two-stage magma mixing between magmas generated in the mantle wedge, lithospheric mantle and the continental crust is responsible for the varying compositions of the erupted Taapaca and Parinacota lavas. Proportions of the mafic and silicic magmas, simultaneously present in the subvolcanic plumbing system constitute mineralogy of the hybrid lavas. This study shows that the proportions of the compositionally and physically contrasting magmas define the distinct differentiation regimes of the calc-alkaline magmas in the volcanic systems, controlled by input rates from the mantle and the deep crust. VI Table of Contents TABLE OF CONTENTS CHAPTER 1: A study of volcanic differentiation regimes – Introduction and Overview ....................... 1 CHAPTER 2: End-member magma compositions from Taapaca Dome Complex and Parinacota Stratovolcano, 18°S, Central Volcanic Zone, N. Chile and their significance in the genesis of the Central Andean Quaternary magmas: Application of Polytopic Vector Analysis..................................................... 7 ABSTRACT .................................................................................................................................................... 7 1. INTRODUCTION ...................................................................................................................................... 8 2. POLYTOPIC VECTOR ANALYSIS ......................................................................................................12 3. VOLCANOLOGICAL BACKGROUND................................................................................................13 4. SAMPLES AND METHODS ...................................................................................................................15 4.1. DATA SOURCES .....................................................................................................................................15 4.2. GEOCHEMICAL AND PETROGRAPHIC CHARACTERISTICS OF THE SAMPLES .............................................15 4.2.1. Taapaca Volcanic Complex (TVC) ...............................................................................................15 4.2.2. Geochemical relationship of Taapaca and Parinacota mafic magmas ........................................16 4.2.3. Parinacota Volcano ......................................................................................................................17 4.3. ANALYTICAL METHODS ........................................................................................................................18 4.4. STATISTICAL METHOD: THE PVA CALCULATION PROCEDURE ...............................................................19 4.4.1. Data sets used in the PVA .............................................................................................................19 4.4.2. PVA modules and calculation conditions .....................................................................................19 5. RESULTS ...................................................................................................................................................21 5.1. NUMBER OF END-MEMBERS ..................................................................................................................22 5.2. PVA END-MEMBER COMPOSITIONS .......................................................................................................25 5.3. MIXING PROPORTIONS OF THE PVA END-MEMBERS ..............................................................................32 5.4. CONSTRAINED ISOTOPIC COMPOSITION OF THE PVA BASALTIC END-MEMBER ......................................36 6. DISCUSSION ............................................................................................................................................40 6.1. GEOLOGICAL BACKGROUND OF PVA END-MEMBERS............................................................................40 6.2. GEOCHEMICAL CHARACTERS OF THE PVA END-MEMBERS ...................................................................41 6.2.1. Geochemical character of the BEM..............................................................................................41 6.2.2. Geochemical character of the AEM..............................................................................................42 6.2.3. Geochemical character of the RDEM ...........................................................................................43 6.3. PVA END-MEMBERS IN CONTEXT WITH THE QUATERNARY CVZ MAGMAS ...........................................46 6.3.1. Relationship of the PVA end-members to the regional Quaternary differentiation trends ...........46 6.3.2. Relationship of the PVA end-members to the entire Quaternary CVZ lavas ................................46 6.3.3. Frequency of the PVA compositions in the CVZ ...........................................................................47 6.4. PREVIOUS PETROGENESIS MODELS OF THE CVZ MAGMAS ....................................................................49 6.4.1. MASH-dominated petrogenesis of the modern Andean magmas ..................................................49 6.4.2. Temporal changes in the Miocene-Holocene magma compositions in the CVZ ...........................49 6.5. NOVEL PETROGENETIC MODEL OF THE CVZ MAGMAS BASED ON PVA RESULTS ..................................50 6.5.1. Magmatic source of the BEM PVA end-member ..........................................................................51 6.5.2. Magmatic source of the AEM PVA end-member ..........................................................................53 6.5.3. Magmatic source of the RDEM PVA end-member .......................................................................55
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages248 Page
-
File Size-