Noncommutative Geometry Models for Particle Physics and Cosmology, Lecture I

Noncommutative Geometry Models for Particle Physics and Cosmology, Lecture I

Noncommutative Geometry models for Particle Physics and Cosmology, Lecture I Matilde Marcolli Villa de Leyva school, July 2011 Matilde Marcolli NCG models for particles and cosmology, I Plan of lectures 1 Noncommutative geometry approach to elementary particle physics; Noncommutative Riemannian geometry; finite noncommutative geometries; moduli spaces; the finite geometry of the Standard Model 2 The product geometry; the spectral action functional and its asymptotic expansion; bosons and fermions; the Standard Model Lagrangian; renormalization group flow, geometric constraints and low energy limits 3 Parameters: relations at unification and running; running of the gravitational terms; the RGE flow with right handed neutrinos; cosmological timeline and the inflation epoch; effective gravitational and cosmological constants and models of inflation 4 The spectral action and the problem of cosmic topology; cosmic topology and the CMB; slow-roll inflation; Poisson summation formula and the nonperturbative spectral action; spherical and flat space forms Matilde Marcolli NCG models for particles and cosmology, I Geometrization of physics Kaluza-Klein theory: electromagnetism described by circle bundle over spacetime manifold, connection = EM potential; Yang{Mills gauge theories: bundle geometry over spacetime, connections = gauge potentials, sections = fermions; String theory: 6 extra dimensions (Calabi-Yau) over spacetime, strings vibrations = types of particles NCG models: extra dimensions are NC spaces, pure gravity on product space becomes gravity + matter on spacetime Matilde Marcolli NCG models for particles and cosmology, I Why a geometrization of physics? The standard model of elementary particles Matilde Marcolli NCG models for particles and cosmology, I Standard model Lagrangian: can compute from simpler data? 1 a a abc a b c 1 2 abc ade b c d e + SM = 2 ∂ν gµ∂ν gµ gsf ∂µgν gµgν 4 gs f f gµgνgµgν ∂ν Wµ ∂νWµ− L 2 + − 1 0 − 0 1 2 0 −0 1 − 0 + − M W W − ∂ν Z ∂νZ 2 M Z Z ∂µAν∂µAν igcw(∂νZ (W W − µ µ 2 µ µ 2cw µ µ 2 µ µ ν + − 0 + − +− 0 + − + − Wν Wµ−) Zν (Wµ ∂ν Wµ− Wµ−∂ν Wµ )+ Zµ(Wν ∂νWµ− Wν−∂ν Wµ )) −+ + − + +− + − igsw(∂νAµ(Wµ Wν− Wν Wµ−) Aν (Wµ ∂ν Wµ− Wµ−∂ν Wµ )+ Aµ(Wν ∂ν Wµ− + 1 2 −+ + − 1 2 + − + 2 2 0 + 0 − Wν−∂ν Wµ )) 2 g Wµ Wµ−Wν Wν− + 2 g Wµ Wν−Wµ Wν− + g cw(ZµWµ Zν Wν− 0 0 + − 2 2 + + 2 0 + − ZµZµWν Wν−)+ g sw(AµWµ AνWν− AµAµWν Wν−)+ g swcw(AµZν (Wµ Wν− + 0 + 1 − 2 2 + 1 0 0− W W −) 2A Z W W −) ∂ H∂ H 2M α H ∂ φ ∂ φ− ∂ φ ∂ φ ν µ − µ µ ν ν − 2 µ µ − h − µ µ − 2 µ µ − 2M 2 2M 1 2 0 0 + 2M 4 β + H + (H + φ φ +2φ φ−) + α h g2 g 2 g2 h − 3 0 0 + gαhM (H + Hφ φ +2Hφ φ−) 1 2 4 0 4 + 2 0 2 + 2−+ 0 2 2 8 g αh (H +(φ ) + 4(φ φ−) + 4(φ ) φ φ− +4H φ φ− + 2(φ ) H ) + 1 M 0 0 − gMW W −H g 2 Z Z H µ µ 2 cw µ µ 1 + 0 0 − 0 +− + 0 2 ig Wµ (φ ∂µφ− φ−∂µφ ) Wµ−(φ ∂µφ φ ∂µφ ) + 1 + − + − + 1− 1 0 0 0 g W (H∂ φ− φ−∂ H)+ W −(H∂ φ φ ∂ H) + g (Z (H∂ φ φ ∂ H)+ 2 µ µ µ µ µ µ 2 cw µ µ µ − 2 − − 1 0 0 + + sw 0 + + + M ( Z ∂µφ +W ∂µφ− +W −∂µφ ) ig MZ (W φ− W −φ )+igswMAµ(W φ− cw µ µ µ cw µ µ µ µ 2 − − − + 1 2cw 0 + + + + W −φ ) ig − Z (φ ∂ φ− φ−∂ φ )+ igs A (φ ∂ φ− φ−∂ φ ) µ 2cw µ µ µ w µ µ µ 1 2 + −2 0 2 + − 1 2 1 0 0 2 0 2 − 2 2 +− g W W − (H +(φ ) +2φ φ−) g 2 Z Z (H +(φ ) + 2(2s 1) φ φ−) 4 µ µ 8 cw µ µ w 2 −2 − − 1 2 sw 0 0 + + 1 2 sw 0 + + 1 2 0 + g Z φ (W φ− + W −φ ) ig Z H(W φ− W −φ )+ g s A φ (W φ− + 2 cw µ µ µ 2 cw µ µ µ 2 w µ µ + 1 2 − + + −2 sw 2 0 + W −φ )+ ig s A H(W φ− W −φ ) g (2c 1)Z A φ φ− µ 2 w µ µ µ cw w µ µ 2 2 + 1 a σ µ σ a− λ − λ λ λ− λ λ −λ g s A A φ φ− + ig λ (¯q γ q )g e¯ (γ∂ + m )e ν¯ (γ∂ + m )ν u¯ (γ∂ + w µ µ 2 s ij i j µ − e − ν − j mλ)uλ d¯λ(γ∂ + mλ)dλ + igs A (¯eλγµeλ)+ 2 (¯uλγµuλ) 1 (d¯λγµdλ) + u j − j d j w µ − 3 j j − 3 j j ig Z0 (¯νλγµ(1 + γ5)νλ)+(¯eλγµ(4s2 1 γ5)eλ)+(d¯λγµ( 4 s2 1 γ5)dλ)+ 4cw µ{ w− − j 3 w − − j (¯uλγµ(1 8 s2 + γ5)uλ) + ig W + (¯νλγµ(1 + γ5)U lep eκ)+(¯uλγµ(1 + γ5)C dκ) + j − 3 w j } 2√2 µ λκ j λκ j ig κ lep µ 5 λ κ µ 5 λ W (¯e U † γ (1 + γ )ν )+(d¯ C† γ (1 + γ )u ) + 2√2 µ− κλ j κλ j ig φ+ mκ(¯νλU lep (1 γ5)eκ)+ mλ(¯νλU lep (1 + γ5)eκ + 2M√2 − e λκ − ν λκ ig g mλ φ mλ(¯eλU lep† (1 + γ5)νκ) mκ(¯eλU lep† (1 γ5)νκ ν H(¯νλνλ) 2M√2 − e λκ ν λκ 2 M λ λ − λ − − − g me H(¯eλeλ)+ ig mν φ0(¯νλγ5νλ) ig me φ0(¯eλγ5eλ) 1 ν¯ M R (1 γ )ˆν 2 M 2 M − 2 M − 4 λ λκ − 5 κ − 1 ν¯ M R (1 γ )ˆν + ig φ+ mκ(¯uλC (1 γ5)dκ)+ mλ(¯uλC (1 + γ5)dκ + 4 λ λκ 5 κ 2M√2 d j λκ j u j λκ j − − − λ ig λ ¯λ 5 κ κ ¯λ 5 κ g mu λ λ φ− m (d C† (1 + γ )u ) m (d C† (1 γ )u H(¯u u ) 2M√2 d j λκ j − u j λκ − j − 2 M j j − mλ λ mλ g d ¯λ λ ig mu 0 λ 5 λ ig d 0 ¯λ 5 λ ¯a 2 a abc ¯a b c 2 M H(dj dj )+ 2 M φ (¯uj γ uj ) 2 M φ (dj γ dj )+ G ∂ G + gsf ∂µG G gµ + − 2 ¯ + 2 2 + ¯ 2 2 ¯ 0 2 M 0 ¯ 2 + ¯ 0 X (∂ M )X + X−(∂ M )X−+X (∂ 2 )X + Y ∂ Y + igcwWµ (∂µX X− − − − cw − ¯ + 0 + ¯ ¯ + ¯ 0 ∂µX X )+igswWµ (∂µYX− ∂µX Y )+ igcwWµ−(∂µX−X ¯ 0 + ¯ − ¯ + 0 ¯ + + − ∂µX X )+igswWµ−(∂µX−Y ∂µYX )+ igcwZµ(∂µX X − + + − ∂µX¯ −X−)+igswAµ(∂µX¯ X − 2 ¯ 1 ¯ + + ¯ 1 ¯ 0 0 1 2cw ¯ + 0 + ¯ 0 ∂µX−X−) gM X X H + X−X−H + 2 X X H + − igM X X φ X−X φ− + − 2 cw 2cw − 1 0 + 0 + 0 + 0 + igMX¯ X−φ X¯ X φ− +igMs X¯X−φ X¯ X φ− + 2cw w 1− + + 0 0 − igM X¯ X φ X¯ −X−φ . 2 − 1 Matilde Marcolli NCG models for particles and cosmology, I Standard model parameters: are there relations? why these values? Matilde Marcolli NCG models for particles and cosmology, I Building mathematical models: essential requirements Conceptualize: complicated things (SM Lagrangian) should follow from simple things (geometry) Enrich: extend existing models with new features Predict: Higgs mass? new particles? new parameter relations? new phenomena? The elephant in the room: Gravity! Coupling gravity to matter: the good: better conceptual structure, links particle physics to cosmology; the bad: worse chances of passing from classical to quantum theory In NCG models: \all forces become gravity" (on an NC space) Matilde Marcolli NCG models for particles and cosmology, I What the NCG model provides: Einstein{Hilbert action: 1 S (g ) = R pg d4x EH µν 16πG ZM Gravity minimally coupled to matter: S = SEH + SSM with SSM = particle physics Standard Model Lagrangian ) Right handed neutrinos with Majorana masses µν Modified gravity model f (R; R ; Cλµνκ) with conformal gravity: Weyl curvature tensor 1 C = R (g R g R g R + g R ) λµνκ λµνκ − 2 λν µκ − λκ µν − µν λκ µκ λν 1 + Rα(g g g g ) 6 α λν µκ − λκ µν Non-minimal coupling of Higgs to gravity 1 2 2 2 2 4 4 D H µ H ξ0 R H + λ0 H pg d x 2j µ j − 0j j − j j j j ZM Matilde Marcolli NCG models for particles and cosmology, I What is Noncommutative Geometry? X compact Hausdorff topological space C(X ) abelian , C ∗-algebra of continuous functions (Gelfand{Naimark) Noncommutative C ∗-algebra : think of as \continuous functions on an NC space" A Describe geometry in terms of algebra C(X ) and dense subalgebras like C 1(X ) if X manifold Differential forms, bundles, connections, cohomology: all continue to make sense without commutativity (NC geometry) Can describe \bad quotients" as good spaces: functions on the graph of the equivalence relation with convolution product To do physics: need the analog of Riemannian geometry Matilde Marcolli NCG models for particles and cosmology, I Spectral triples and NC Riemannian manifolds( ; ; D) A H involutive algebra A representation π : ( ) A!L H self adjoint operator D on , dense domain H compact resolvent (1 + D2) 1=2 − 2 K [a; D] bounded a 8 2 A even if Z=2- grading γ on H [γ; a] = 0; a ; Dγ = γD 8 2 A − 2 Main example( C 1(M); L (M; S); =@M ) with chirality γ5 in 4-dim Alain Connes, Geometry from the spectral point of view, Lett.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    29 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us