26-Summary of Equations to Accompany.Pdf

26-Summary of Equations to Accompany.Pdf

boy30444_formulacard.qxd 3/24/06 2:04 PM Page 1 Summary of Equations to Accompany INTRODUCTORY CIRCUIT ANALYSIS, Eleventh Edition, by Robert L. Boylestad © Copyright 2007 by Prentice Hall. All Rights Reserved. dc Introduction Capacitors Ϫ12 Conversions 1 meter ϭ 100 cm ϭ 39.37 in., 1 in. ϭ 2.54 cm, Capacitance C ϭ Q/V ϭ eA/d ϭ 8.85 ϫ 10 er A/d farads (F), 1 yd ϭ 0.914 m ϭ 3 ft, 1 mile ϭ 5280 ft, °F ϭ 9/5°C ϩ 32, °C ϭ C ϭ erCo Electric field strength Ᏹ ϭ V/d ϭ Q/eA (volts/meter) 12 Ϫt/t Ϫt/t 5/9(°F Ϫ 32), K ϭ 273.15 ϩ °C Scientific notation 10 ϭ Transients (charging) iC ϭ (E/R)e , t ϭ RC, uC ϭ E(1 Ϫ e ), ϭ 9 ϭ ϭ 6 ϭ ϭ 3 ϭ ϭ Ϫ3 ϭ ϭ Ϫt/t ϭ Ϫt/RC ϭ tera T, 10 giga G, 10 mega M, 10 kilo k, 10 (discharge) uC Ee , iC (E/R)e iC iCav C(DuC /Dt) Ϫ6 Ϫ9 Ϫ12 milli ϭ m, 10 ϭ micro ϭ m, 10 ϭ nano ϭ n, 10 ϭ pico ϭ p Series QT ϭ Q1 ϭ Q2 ϭ Q3, 1/CT ϭ (1/C1) ϩ (1/C2) ϩ (1/C3) ϩ иии ϩ n Ϫn Ϫn n n m nϩm Powers of ten 1/10 ϭ 10 , 1/10 ϭ 10 , (10 )(10 ) ϭ 10 , (1/CN), CT ϭ C1C2/(C1 ϩ C2) Parallel QT ϭ Q1 ϩ Q2 ϩ Q3, n m nϪm n m nm 2 10 /10 ϭ 10 , (10 ) ϭ 10 CT ϭ C1 ϩ C2 ϩ C3 Energy WC ϭ (1/2)CV Voltage and Current Inductors 2 9 2 2 2 Coulomb’s law F ϭ kQ1Q2/r , k ϭ 9 ϫ 10 Nиm /C , Self-inductance L ϭ N mA/l (henries), L ϭ mr Lo ϭ ϭ ϭ ϭ ϭ Q coulombs (C), r meters (m) Current I Q/t (amperes), Induced voltage eLav L(Di/Dt) Transients (storage) iL Ϫ19 Ϫt/t Ϫt/t t ϭ seconds (s), Qe ϭ 1.6 ϫ 10 C Voltage V ϭ W/Q (volts), Im(1 Ϫ e ), Im ϭ E/R, t ϭ L/R, uL ϭ Ee (decay), uL ϭ Ϫt/t ′ Ϫt/t ′ W ϭ joules (J) [1 ϩ (R2/R1)]Ee , t′ ϭ L/(R1 ϩ R2), iL ϭ Ime , Im ϭ E/R1 Series LT ϭ L1 ϩ L2 ϩ L3 ϩ иии ϩ LN Parallel 1/LT ϭ (1/L1) ϩ Resistance (1/L2) ϩ (1/L3) ϩ иии ϩ (1/LN), LT ϭ L1L2/(L1 ϩ L2) ϭ 2 Circular wire R ϭ rl/A (ohms), r ϭ resistivity, l ϭ feet, Energy WL 1/2(LI ) 2 2 ACM ϭ (dmils) , r(Cu) ϭ 10.37 Metric units l ϭ cm, A ϭ cm , Ϫ6 Magnetic Circuits r(Cu) ϭ 1.724 ϫ 10 ohm-cm Temperature (ͿTͿ ϩ T1)/R1 ϭ Ϳ Ϳ ϩ ϭ ϩ Ϫ ϭ 2 ( T T2)/R2, R1 R20[1 a20(T1 20°C)], a20(Cu) 0.00393 Flux density B ϭ F/A (webers/m ) Permeability m ϭ mrmo Color code Bands 1–3: 0 ϭ black, 1 ϭ brown, 2 ϭ red, 3 ϭ orange, (Wb/Aиm) Reluctance ᏾ ϭ l/mA (rels) Ohm’s law F ϭ Ᏺ/᏾ ϭ ϭ ϭ ϭ ϭ ϭ 4 yellow, 5 green, 6 blue, 7 violet, 8 gray, 9 white, (webers) Band 3: 0.1 ϭ gold, 0.01 ϭ silver, Band 4: 5% ϭ gold, 10% ϭ silver, Ᏺ ϭ ϭ ϭ ϭ ϭ Magnetomotive force NI (ampere-turns) Magnetizing 20% no band, Band 5: 1% brown, 0.1% red, 0.01% orange, ϭ Ᏺ ϭ ⌺ Ᏺ ϭ ϭ ϭ force H /l NI/l Ampère’s circuital law 0 0.001% yellow Conductance G 1/R siemens (S) 5 Flux ⌺ Fentering ϭ ⌺ Fleaving Air gap Hg ϭ 7.96 ϫ 10 Bg Ohm’s Law, Power, and Energy Ohm’s law I ϭ E/R, E ϭ IR, R ϭ E/I Power P ϭ W/t ϭ VI ϭ I 2R ϭ V 2/R (watts), 1 hp ϭ 746 W Greek Alphabet Efficiency h% ϭ (Po /Pi) ϫ 100%, hT ϭ h1 и h2 и h3 hn Energy W ϭ Pt, W (kWh) ϭ [P(W) t(h)]/1000 Letter Capital Lowercase Letter Capital Lowercase Series Circuits Alpha AaNu Nn RT ϭ R1 ϩ R2 ϩ R3 ϩ иии ϩ RN, RT ϭ NR, I ϭ E/RT, V ϭ IR Beta BbXi Yy Kirchhoff’s voltage law ⌺ V ϭ 0, ⌺ Vrises ϭ ⌺ Vdrops Gamma GgOmicron Oo ϭ Voltage divider rule Vx RxE/RT Delta DdPi Pp Parallel dc Circuits Epsilon EeRho Rr Zeta ZzSigma ⌺ j ϭ ϩ ϩ ϩ иии ϩ ϭ RT 1/(1/R1 1/R2 1/R3 1/RN), RT R/N, Eta HhTau Tt R ϭ R R R ϩ R I ϭ EG ϭ E/R T 1 2/( 1 2), T T Theta VvUpsilon Uu Kirchhoff’s current law ⌺ I ϭ ⌺ I entering leaving Iota IiPhi Ff Current divider rule I ϭ (R /R )I, (Two parallel elements): x T x Kappa KkChi Xx I1 ϭ R2I/(R1 ϩ R2), I2 ϭ R1I/(R1 ϩ R2) Lambda LlPsi Ww Series-Parallel Circuits Mu M m Omega ⍀ q Potentiometer loading RL >> RT Ammeter Rshunt ϭ RmICS /(Imax ICS) ϭ Ϫ Voltmeter Rseries (Vmax VVS)/ICS Prefixes Ohmmeter Rs (E/ICS) Rm zero-adjust/2 Methods of Analysis and Selected Topics (dc) Multiplication SI SI Factors Prefix Symbol Source conversions E ϭ IRp, Rs ϭ Rp, I ϭ E/Rs a b 18 exa E 10 ؍ Determinants D ϭ 1 1 ϭ a b Ϫ a b 1 000 000 000 000 000 000 ⏐⏐a b 1 2 2 1 peta P 1015 ؍ 000 000 000 000 000 1 2 2 ϭ ⌬ ′ ϭ tera T 1012 ؍ Bridge networks R1/R3 R2/R4 -Y conversions R 1 000 000 000 000 R ϩ R ϩ R , R ϭ R R /R′, R ϭ R R /R′, R ϭ R R /R′, R ϭ R /3 giga G 109 ؍ A B C 3 A B 2 A C 1 B C Y D 1 000 000 000 Y-⌬ conversions R″ ϭ R R ϩ R R ϩ R R , R ϭ R″/R , R ϭ R″/R , mega M 106 ؍ C 3 B 2 1 000 000 3 2 3 1 2 1 RA ϭ R″/R1, RD ϭ 3RY kilo k 103 ؍ 000 1 10؊3 milli m ؍ Network Theorems 0.001 ؊6 micro M 10 ؍ Superposition Voltage sources (short-circuit equivalent), current 0.000 001 ؊ nano n 9 10 ؍ sources (open-circuit equivalent) 0.000 000 001 ؊12 pico p 10 ؍ Thévenin’s Theorem RTh: (all sources to zero), ETh: (open-circuit 0.000 000 000 001 10؊15 femto f ؍ terminal voltage) 0.000 000 000 000 001 ؊18 ؍ Maximum power transfer theorem RL ϭ RTh ϭ RN, Pmax ϭ 2 2 0.000 000 000 000 000 001 10 atto a E Th /4RTh ϭ IN RN /4 boy30444_formulacard.qxd 3/24/06 2:04 PM Page 2 Summary of Equations to Accompany INTRODUCTORY CIRCUIT ANALYSIS, Eleventh Edition, by Robert L. Boylestad © Copyright 2007 by Prentice Hall. All Rights Reserved. ac 2 2 Sinusoidal Alternating Waveforms R-C filters (high-pass) fc ϭ 1/(2pRC), Vo /Vi ϭ R/͙RෆෆϩෆෆXෆC ЄtanϪ1(X /R) (low-pass) f ϭ 1/(2pRC), V /V ϭ X /͙Rෆෆ2 ϩෆෆXෆ2 Sine wave u ϭ Vm sin a, a ϭ qt ϭ 2pft, f ϭ 1/T, 1 radian ϭ 57.3°, C c o i C C ϭ ϫ ϭ ϫ Ϫ R radians (p/180°) (degrees), degrees (180°/p) (radians) ЄϪtan 1 Identities sin(qt ϩ 90°) ϭ cos qt, sin qt ϭ cos[qt Ϫ (p/2)], XC sin(Ϫa) ϭϪsin a, cos(Ϫa) ϭ cos a Average value G ϭ Octave 2 1, 6 dB/octave Decade 10 1, 20 dB/decade algebraic sum of areas/length of curve Transformers Effective (rms) value Irms ϭ 0.707Im, Im ϭ ͙2ෆIrms, 2 ϭ ͙ෆෆෆ ϭ Irms ϭ ͙arෆeaෆෆ[iෆ(tෆ)]ෆ/ෆT Mutual inductance M k LpLs Iron-core Ep 4.44fNpFm, Es ϭ 4.44fNsFm, Ep /Es ϭ Np /Ns, a ϭ Np /Ns, Ip /Is ϭ Ns/Np, The Basic Elements and Phasors 2 Zp ϭ a ZL, Ep Ip ϭ Es Is, Pi ϭ Po(ideal) ϭ ϩ 2 ϩ R: Im ϭ Vm /R, in phase L: XL ϭ qL, uL leads iL by 90° Air-core Zi Zp [qM) /(Zs ZL)] ϭ ϭ ϭ C: XC 1/qC, iC leads uC by 90° Power P (Vm Im /2) cos v Polyphase Systems V I cos v R: P ϭ V I ϭ I2 R ϭ V 2 /R Power rms rms rms rms rms rms ϭ ϭ ϭ ϭ ͙ෆ factor F ϭ cos v ϭ P/V I Rectangular form C ϭ A Ϯ jB Y-Y system Ifg IL IfL, Vf Ef, EL 3 Vf Y-D system p rms rms ϭ ϭ ͙ෆ ϭ ϭ ϭ ͙ෆ Polar form C ϭ CЄv Conversions C ϭ ͙Aෆෆ2 ϩෆෆBෆ2, v ϭ Vf EL, IL 3If D-D system Vf EL Ef, IL 3If Ϫ1 ϭ ͙ෆ ϭ ϭ ϭ tan (B/A), A ϭ C cos v, B ϭ C sin v Operations j ϭ ͙Ϫෆ1ෆ, D-Y system EL 3Vf, If IL, EL Ef Power PT 3Pf, 2 ϭ ϭ ϭ ͙ෆ ϭ j ϭϪ1, 1/j ϭϪj, C1 Ϯ C2 ϭ (ϮA1 Ϯ A2) ϩ j(ϮB1 Ϯ B2), QT 3Qf, ST 3Sf 3ELIL, Fp PT /ST и ϭ Є ϩ ϭ Є Ϫ C1 C2 C1C2 (v1 v2), C1/C2 (C1/C2) (v1 v2) Pulse Waveforms and the R-C Response Series and Parallel ac Circuits % tilt ϭ [(V1 Ϫ V2)/V] ϫ 100% with V ϭ (V1 ϩ V2)/2 ϭ Elements RЄ X Є X ЄϪ Pulse repetition frequency (prf) 1/T 0°, L 90°, C 90° ϭ ϫ ϭ ϩ ϩ ϩ иии ϩ ϭ ϭ Duty cycle (tp/T) 100% Series ZT Z1 Z2 Z3 ZN, Is E/ZT, Fp R/ZT ϭ ϩ Ϫ ϫ ϭ ϭ ϩ ϩ Vav (duty cycle)(peak value) (1 duty cycle) (Vb) Voltage divider rule Vx ZxE/ZT Parallel YT Y1 Y2 ϭ ϩ Ϫ Ϫ Ϫt/RC ϩ иии ϩ ϭ ϩ Є ЄϪ R-C circuits uC Vi (Vf Vi)(1 e ) Y3 YN, ZT Z1Z2/(Z1 Z2), G 0°, BL 90°, ϭ Є ϭ ϭ ϭ Compensated attenuator RpCp RsCs BC 90°, Fp cos vT G/YT Current divider rule I1 Z2IT/(Z1 ϩ Z2), I2 ϭ Z1IT /(Z1 ϩ Z2) Equivalent circuits Rs ϭ Nonsinusoidal Circuits 2 2 ϩ 2 ϭ 2 2 ϩ 2 ϭ 2 ϩ 2 Rp Xp /(Xp Rp ), Xs Rp Xp/(Xp Rp ), Rp (Rs Xs )/Rs, Fourier series f(a) ϭ A0 ϩ A1 sin qt ϩ A2 sin 2qt ϩ иии ϩ ϭ 2 ϩ 2 Xp (Rs Xs )/Xs An sin nqt ϩ B1 cos qt ϩ B2 cos 2qt ϩ иии ϩ Bn cos nqt Even function f(a) ϭ f(Ϫa), no B terms Odd function f(a) ϭ Series-Parallel ac Networks: n Ϫf(Ϫa), no An terms, no odd harmonics if f(t) ϭ f [(T/2) ϩ t], no even Employ block impedances and obtain general solution for reduced harmonics if f(t) ϭϪf [(T/2) ϩ t] network.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    10 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us