Singular Value Decomposition

Singular Value Decomposition

DEPARTMENT OF MATHEMATICS TECHNICAL REPORT SINGULAR VALUE DECOMPOSITION Andrew Lounsbury September 2018 No. 2018-2 TENNESSEE TECHNOLOGICAL UNIVERSITY Cookeville, TN 38505 Singular Value Decomposition∗ Andrew Lounsbury Department of Mathematics Tennessee Technological University Cookeville, TN, 38505 [email protected] September 28, 2018 Abstract The Singular Value Decomposition (SVD) provides a cohesive summary of a handful of topics introduced in basic linear algebra. SVD may be applied to digital photographs so that they may be approximated and transmitted with a concise computation. Mathematics Subject Classification. Primary 15A23, 15A24 Keywords. singular value, matrix factorization Contents 1 Introduction 1 2 Steps for Calculation of SVD 3 3 Theory 5 4 Examples 9 5 Maple 12 6 Conclusions 16 A Appendix 16 1 Introduction This paper begins with a definition of SVD and instructions on how to compute it, which includes calculating eigenvalues, singular values, eigenvectors, left and right singular vectors, or, alterna- tively, orthonormal bases for the four fundamental spaces of a matrix. We present two theorems ∗Completed in partial fulfillment of the requirements for MATH 4993 Mathematical Research (3 cr) in spring 2018 under supervision of Dr. R. Ablamowicz. 1 that result from SVD with corresponding proofs. We provide examples of matrices and their sin- gular value decompositions. There is also a section involving Maple that includes examples of photographs. It is demonstrated how the inclusion of more and more information from the SVD allows one to construct accurate approximations of a color image. Definition 1. Let A be an m × n real matrix of rank r ≤ min(m; n).A Singular Value Decom- position (SVD) is a way to factor A as A = UΣV T ; (1) T T where U and V are orthogonal matrices such that U U = Im and V V = In. The Σ matrix contains the singular values of A on its pseudo-diagonal, with zeros elsewhere. Thus, 2 3 σ1 0 :::::: 0 ::: 0 2 T 3 6 .. .7 v1 6 0 . .7 6 . 7 6 vT 7 T 6 . 7 6 2 7 A = UΣV = u1 u2 ··· um 6 . σr . 7 6 7; (2) 6 . 7 6 . 7 | {z } 6 . .7 4 . 5 U(m×m) 6 0 0 . .7 vT 4 . 5 n 0 0 ::: .. 0 ::: 0 | {z } T | {z } V (n×n) Σ(m×n) with u1; : : : ; um being the orthonormal columns of U; σ1; : : : ; σr being the singular values of A T satisfying σ1 ≥ σ2 ≥ · · · ≥ σr > 0, and v1; : : : ; vn being the orthonormal columns of V : Singular values are defined as the positive square roots of the eigenvalues of AT A: T 2 Note that since A A of size n × n is real and symmetric of rank r, r of its eigenvalues σi ; i = 1; : : : ; r; are positive and therefore real, while the remaining n − r eigenvalues are zero. In particular, T T T T 2 T A A = V (Σ Σ)V ;A Avi = σi vi; i = 1; : : : ; r; A Avi = 0; i = r + 1; : : : ; n: (3) T 2 Thus, the first r vectors vi are the eigenvectors of A A with the eigenvalues σi : Likewise, we have T T T T 2 T AA = U(ΣΣ )U ; AA ui = σi ui; i = 1; : : : ; r; AA ui = 0; i = r + 1; : : : ; m: (4) T 2 Thus, the first r vectors ui are the eigenvectors of AA with the eigenvalues σi : Furthermore, it can be shown (see Lemmas 1 and 2) that Avi = σiui; i = 1; : : : ; r; and Avi = 0; i = r + 1; : : : ; n: (5) If rank(A) = r < min(m; n), then there are n − r zero columns and rows in Σ; rendering the 2 r + 1; : : : ; m columns of U and r + 1; : : : ; n rows in V T unnecessary to recover A: Therefore, 2 3 2 T 3 σ1 0 :::::: 0 ::: 0 v1 6 .. .7 6 . 7 6 0 . .7 6 . 7 6 . 7 6 T 7 T 6 . 7 6 vr 7 A = UΣV = u1 ··· ur ur+1 ··· um 6 . σr . 7 6 7 6 . 7 6 vT 7 6 . .7 6 r+1 7 0 0 . 6 7 6 . 7 4 . 5 4 5 .. T 0 0 ::: 0 ::: 0 vn 2 3 σ1 0 ::: 0 2 vT 3 6 . 7 1 6 0 σ2 . 7 . = u1 ··· ur 6 7 6 . 7 6 . .. 7 4 5 | {z } . T m×r 4 5 vr 0 : : : σr | {z } | {z } r×n r×r = u1σ1v1 + ··· + urσrvr: (6) 2 Steps for Calculation of SVD Here, we provide an algorithm to calculate a singular value decomposition of a matrix. 1. Compute AT A of a real m × n matrix A of rank r. 2. Compute the singular values of AT A. T T Solve the characteristic equation ∆AT A(λ) = jA A − λIj = 0 of A A for the eigenvalues T λ1; : : : ; λr of A A. These eigenvalues will be positive. Take their square roots to obtain σ1; : : : ; σr which are the singular values of A, that is, p σi = + λi; i = 1; : : : ; r: (7) 3. Sort the singular values, possibly renaming them, so that σ1 ≥ σ2 ≥ · · · ≥ σr. 4. Construct the Σ matrix of size m × n such that Σii = σi for i = 1; : : : ; r; and Σij = 0 when i 6= j: 5. Compute the eigenvectors of AT A. T T Find a basis for Null(A A − λiI): That is, solve (A A − λiI)si = 0 for si, an eigenvector T of A corresponding to λi; for each eigenvalue λi. Since A A is symmetric, its eigenvectors corresponding to different eigenvalues are already orthogonal (but likely not orthonormal). See Lemma 1. 6. Compute the (right singular) vectors v1; : : : ; vr by normalizing each eigenvector si by multi- plying it by 1 : That is, let jjsijj 1 vi = si; i = 1; : : : ; r: (8) jjsijj 3 If n > r, the additional n − r vectors vr+1; : : : ; vn need to be chosen as an orthonormal basis in Null(A): Note that since Avi = σiui for i = 1;:::; vectors v1; : : : ; vr provide an orthonormal basis for Row(A) while the vectors u1; : : : ; ur provide an orthonormal basis for Col(A): In particular, n R = Row(A) ? Null(A) = spanfv1; : : : ; vrg ? spanfvr+1; : : : ; vr+(n−r)g: (9) 7. Construct the orthogonal matrix V = [v1j · · · jvn]. 8. Verify V T V = I. 9. Compute the (left singular) vectors u1; : : : ; ur as Avi Avi = σiui =) ui = ; i = 1 : : : r: (10) σi In this method, u1; : : : ; ur are orthogonal by Lemma 5. Alternatively, (i) Note that AAT = U(ΣΣT )U T suggests the vectors of U can be calculated as the eigen- vectors of AAT . In using this method, the vectors need to be normalized first. Namely, 1 T ui = si, where si is an eigenvector of AA : jjsijj (ii) Since ∆AT A(λ) = ∆AAT (λ) by Lemma 8, σ1; : : : ; σr are also the square roots of the eigenvalues of AAT . If m > r, the additional m − r vectors ur+1; : : : ; um need to be chosen as an orthonormal T basis in Null(A ): Note that since Avi = σiui for i = 1;:::; vectors u1; : : : ; ur provide an orthonormal basis for Col(A) while the vectors ur+1; : : : ; um provide an orthonormal basis for the left null space Null(AT ): In particular, m T R = Col(A) ? Null(A ) = spanfu1; : : : ; urg ? spanfur+1; : : : ; ur+(m−r)g: (11) 10. Construct U = [u1j · · · jum]. 11. Verify U T U = I. 12. Verify A = UΣV T . 13. Construct the dyadic decomposition1 of A, as described in Thm. 13: T T T T A = UΣV = σ1u1v1 + σ2u2v2 + ··· + urσrvr : (12) 1 T A dyad is a product of an n × 1 column vector with another 1 × n row vector, e.g., u1v1 ; resulting in a square n × n matrix whose rank is 1 by Lemma 6. 4 3 Theory In this section, we provide the two theorems related to SVD along with their proofs. Theorem 1. Let A = UΣV T be a singular value decomposition of an m × n real matrix of rank r. Then, 1. AV = UΣ and Av = σ u ; i = 1; : : : ; r Row(A) = spanfv ; : : : ; v g i i i =) 1 r Avi = 0; i = r + 1; : : : ; r + (n − r) Null(A) = spanfvr+1; : : : ; vr+(n−r)g T T T n n 2. A A = V (Σ Σ)V : R ! R 3. AT AV = V (ΣT Σ) and T 2 T A Avi = σi vi; i = 1; : : : ; r Row(A A) = spanfv1; : : : ; vrg T =) T A Avi = 0; i = r + 1; : : : ; r + (n − r) Null(A A) = spanfvr+1; : : : ; vr+(n−r)g 4. U T A = ΣV T and T T ui A = σivi ; i = 1; : : : ; r Col(A) = spanfu1; : : : ; urg T =) T ui A = 0; i = r + 1; : : : ; r + (m − r) Null(A ) = spanfur+1; : : : ; ur+(m−r)g T T T m m 5. AA = U(ΣΣ )U : R ! R 6. AAT U = U(ΣΣT ) and T 2 T AA ui = σi ui; i = 1; : : : ; r Row(AA ) = spanfu1; : : : ; urg T =) T AA ui = 0; i = r + 1; : : : ; r + (m − r) Null(AA ) = spanfur+1; : : : ; ur+(m−r)g Proof of (1). AV = (UΣV T )V = UΣ(V T V ) = UΣ So, AV = Av1 ··· Avr Avr+1 ··· Avn 2 3 σ1 0 :::::: 0 ::: 0 6 .. .7 6 0 . .7 6 7 6 . 7 = u1 ··· ur ur+1 ··· um 6 . σr . 7 6 . 7 6 . .7 6 0 0 . .7 4 . 5 0 0 ::: .. 0 ::: 0 = σ1u1 ··· σrur 0 ··· 0 : Hence, 5 1. Av1 = σ1u1; : : : ; Avr = σrur, and 2. Avr+1 = 0; : : : ; Avr+(n−r) = 0. Proof of (2). AT A = (UΣV T )T (UΣV T ) = (V ΣT U T )(UΣV T ) = V ΣT (U T U)ΣV T = V ΣT ΣV T Proof of (3).

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    21 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us