Kyle W. Knouse Baran Group Meeting 2/10/18 Starch Cellulose

Kyle W. Knouse Baran Group Meeting 2/10/18 Starch Cellulose

Baran Group Meeting Kyle W. Knouse Carbs 2/10/18 6 OH C-5 Contents: Not included in this group meeting: 6 OH 4 What are Carbohydrates?, Roles Biomass to feedstock, Enzymatic glycosylation, 4 β 5 O Reference 5 O HO O OH in biological systems/metabolism, Synthetic carbohydrate polymers, Carbohydrates HO 1 HO OH HO 2 Glycoconjugates, Synthetic as chirons (Martinez, 2014), Nucleoside Chemistry HO 2 3 OH α 3 OH 1 OH challenges/highlights, (O’Hara, 2012; Gianatassio, 2013) HO OH History: Pyranose α-Pyranose OH -10,000 BC: Primitive sugarcane processing in New Guinea β- OH 62% 37% D-Glucose -1500 BC: Cotton cloth from India speards to Persia and China OH HO O -1891: Fischer reports the structure of glucose, mannose, fructose, and arabinose HO -1929: Haworth proposes ring structures for pyranose/furanose OH CHO OHC H -1940’s: Polysaccharides produce protective immune respons H HO H HO HO OH -1956-1963: OH OH HO H H OH -Bacterial peptidoglycan backbone structure HO HO OH O O HO H -major natural polysaccharides (chitin, cellulose, peptidoglycan) are β(1→4) linked H OH H OH HO H -mechanism of peptidoglycan biosynthesis and penicillin action OH -1972: high field NMR for glycan structure analysis CH OH HOH2C α-Furanose OH β-Furanose OH 2 0.5% 0.5% D-Glucose L-Glucose What is a Carb? - Carbohydrates are defined as “hydrates of carbon” polyhydroxyaldehydes, polyhydroxyketones and their derivatives Alpha vs. Beta (Starch vs. Cellulose): HO OH HO O Drugs: -Heparin OH HO -erythropoietin O O O Branching HO α(1→6) OH O O OH HO Starch OH O Linear O α(1→4) HO OH O Class Monomers Subclass Examples Starch - most common carbohydrate in human diets 6 Major classes -Pentoses Sugars (1-2) Mono/Disaccharides, Polyols Glucose, Sucrose, Sorbitol (potatoes, wheat, maize (corn), rice, and cassava) -Hexoses Oligosaccharides (3-9) Malto-oligosaccharides Maltodextrins -water soluble polysaccharide Polysaccharides (>9) Starches Amylose, Pectins, Cellulose -Hexosamines -highly branched polymer of glucose -Deoxyhexoses -linear glucose with α(1→4) glycosidic bonds. -Uronic Acids Other definitions: -branching α(1→6) bonds occurring every 24 to 30 glucose units -Sialic Acids - Monosaccharides = carbs that cannot be hydrolyzed into a simpler form - Polysaccharide = repeating oligosaccharides Amylose Cellulose - Most abundant biomass on Earth. Main component of the primary cell wall of - Glycan = general term for any of these… (left-haded helix) green plants, algae and some bacteria (biofilms) - Often encountered conjugated, >50% of all proteins are glycosylated - Glycoconjugate = mono/oligosaccharide attatched to -Cotton, wood, hemp, etc. a non-carbohydrate moiety (aglycone) -linear glucose with β(1→4)-glycosidic bonds. -no coiling or branching OH “Reducing Linear Cellulose End” Capable of reducing OH β(1→4) OH O O HO OH H2O2, Ferricyanide, O O HO Cu2+, Ag+ O O OH HO HO OH OH Baran Group Meeting Kyle W. Knouse Carbs 2/10/18 Monomeric Building Blocks Oligomeric Biomolecules Central Dogma of Molecular Biology: Letters of the alphabet OR Written Novel O Transcription Translation B B HO O O B DNA RNA Proteins O HO 5’ O P X O O OH B Replication HO B O O RO P DNA DNA Duplication DNA Linear O 4 canonical -displace X nucleobases O “DNA Chemistry” -oxidation O 3’ Information Modification results in (Peters, 2017) similar stereochemical complexity O Simple PG strategy O RHN N NH O 3’→5’ or C→N H N OA* 2 OH R R R HN R O NH Peptides H N Achiral link O Transcription 2 O RNA Information 20 proteogenic AA’s -activate RNA Synthesis R R -displace OA* C mRNA Often Post-Translationaly Nuclear Envelope Modified ( complexity) OR HO O O Linear and HO OH X Branched HO α RO OH Ribosome O RO OR OH O Information HO OH OH 6 HO O Protein HO 4 O Translation OH O HO β O Protein Synthesis “Highlights in Peptide and Carbohydrates RO HO 2 OH 3 OH 1 reducing Protein Synthesis” RO OR O R Only 36 building end (Mallins, 2016) H 5 potential sites Chiral link N OH blocks are needed to for reaction N construct 75% of the >50% of all proteins are glycosylated H 3299 mammalian Diversity: Hexamer R O oligosaccharides. Nucleotide* = 46 = 4096 Mammalian glycan Cell Surface Peptide* = 206 = 64 million structures comprise 78% of all the Motility/membrane eukaryotic glycans Carbohydrate** = 192 billion Signaling movement (charge distribution) ACS Chem. Biol., 2007, 2, 685. Chem. Sci. 2011, 2, 337. Provide structure (peptidoglycan) and preservation (trehalose) *Assuming natural NH2 phosphodiester/ CO H amide linkages Glycans are abundantly expressed on the 2 **based on the “ten outer-surface of prokaryoate and common” mammal eukaryote cells, creating a landscape of monosaccharides recognition sites, barriers and transporters Baran Group Meeting Kyle W. Knouse Carbs 2/10/18 Glycosyl Donors: O O Donor (D) Acceptor (A) Disaccharide (D-A) RO O Y Y = potential leaving group O Z Z O O Promotor (P) O Y O Y O Promotor β-linkage RO X HO RO O + Solvent (Ingnored) Z HO Y Z Z Z RO X Solvent O or Z Z RO α -linkage Two ways to set up reaction: X = Leaving Group Glycosyl Acceptor: O Z 1) Normal Procedure (disarmed donors) 2) Inverse Procedure (armed donors) R = Protecting Group O Y *Bulky groups at C-6 diminish 1→4 Z = participating or Z P D non-participating group (TBDPS, TBDMS, Piv) D + A D-A D + P + A P + A D-A Glycosyl Donors: For armed donors . O NH D P will decompose O O R O O O O . X P R Decomp. D.P A P A + P X CCl3 3 P P Glycosyl halides Glycosyl phosphates Trichloroacetimidates Pentenyl glycosides A D (TMSOTf) OBn X = Cl, Br (AgOTf) (TMSOTf) (NIS/Et3SiOTf D-A or F (SnCl /AgClO ) or Br ) 2 4 R=Alkyl, O-Alkyl 2 AcO HO O X = O, S, lone pair AcO O OTBS O O O AcO N O O OAc 3 S(O)Ar S BnO XR SEt O Et2O, OBn + TMSOTf (0.01 eq.) OBn S BnO O OBn NP: 43% Me O OBn Glycosyl sulfide Glycosyl sulfoxides Glycals IP: 78% Xanthathes OBn AcO (NIS/TfOH (Tf2O) (TMSOTf) (ZnCl2) Me O O O AcO O or DMTST) O OTBS O CCl O O O O 3 AcO N O R OAc 3 O R NH N O Tetrahedron Lett. 1991, 32, 3353 N O O R = H, Me PG Strategies: R R = OR’, SR’, CN Selective 1° protection (Bulky, TBS, Trt, 0 °C, limiting reagents, etc.) 2° equitorial. > 2° axial. OH Armed/Disarmed logic: cis/trans vicinal diols (acetal formation) O Highly dependent Slow HO OH O O on stereochem HO Selective 2° protection, X OH hemiacetal Bu2SnO, R-X + OBz OBz Esters induce slight Two step monomer: (H , ROH) Armed: C-2 = Ether positive charge, oxonium Disarmed C-2 - Ester, Amide, etc. formation is slower OH OAc OAc O Ac O O BF OEt O O O 2 3 Fast HO OH AcO OAc AcO X X HO AcO - AcO OH Pyridine OAc X OAc OBn OBn 100 °C, 1 hr. Baran Group Meeting Kyle W. Knouse Carbs 2/10/18 Not always the case! Kiliani Fischer Synthesis: 1. Acetone, H SO 1. NaH, CS , MeI 2 4 2 CN CN CHO CHO 2. TsCl, pyridine 2. Bu3SnH, AIBN CHO OH OTBS + O OH 3. NaBH4, DMSO 3. H OBn HO OH O HO OH + OH NaCN Heat [H] O 4. H , DMSO O 4. Ac2O, pyridine O OH OH OH OH CH2OH CH OH CH OH OH CH OH CH OH HO 5. Bu SnO HO 5. PhSH, BF OEt H2O 2 2 H2O 2 2 OH 2 O 3 BnO HO 6. BnBr, NaH OH O 6. NaOMe Br D-glyceraldehyde D-threose D-erythrose 7. TBSCl, Pyridine 7. BnBr, NaH Cycle is repeated until desired chain length (requires separation of epimers) 8. H2, Pd/C Me Me 8. Br2 Wohl Degradation: PG Migration: OH OR CHO N CN O SPh OR OR OH NH2OH OH Ac2O OH NaOMe CHO O SPh BzO O SPh OH OH OH OH Tf2O TfO N H2O AcOH MeOH O 3 HO N CH2OH CH2OH CH2OH CH2OH 3 Pyr. HO N3 Chem. Ber., 1893, 730 BzO O N Ph Modern Approach: Total Synthesis of the L-Hexoses - K. B. Sharpless Access to all 8 hexoses, D and L Epimerizations: Eliminations: OH OH SPh RO RO TsO N CHO i. [O], [H] 3 O O O NaN O CHO OR * OR OR ii. Mitsonobu OR O 3 OR O OR R-M AE * Payne OR Pummerer; OR DMF O OR CH2OR OR OR OR OR HO OR HO OR TsO CH2OR CH2OR CH2OR CH2OR TBSO TBSO Interesting transformations: *(+) or (–) tartrate *DIBAL = Retention O O K CO /MeOH = Inversion O PhMgBr O 2 3 OBz OBz “Since the mirror image of every compound in Fig. 2 can be prepared by simple O OMe O F TBSO exchange of the chiral ligand in the AE reaction, the formal synthesis of the D- Me DAST Me hexoses has also been achieved” Science, 1983, 220, 949 N 76% N 3 OH 3 OMe Selective 1° protection Ph J. Carb. Chem., 1985, 627 (Bulky, TBS, Trt, 0 °C, limiting reagents, etc.) Works well for: Ph Mannose BzO Galactose H N O BzO TBSO OH Arabinose O 1. H5IO6 O O O O BzO OH O Highly dependent O Rhamnose H H O 2. TEA, MeOH OH HO hemiacetal OMe on stereochem OMe (H+, ROH) HO R HO H OH R O O O BzO OH BzO OH Me Ph NH H O H WO 2010/015637 A1 90:10:-, 77% Ph O -:100:-, 97% DMTrO Proposed glucose ii.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    9 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us