ABRACADABRA: Detecting Axion Dark Matter Ben Safdi

ABRACADABRA: Detecting Axion Dark Matter Ben Safdi

ABRACADABRA: Detecting axion dark matter 0902.1089 Fermi (NASA) Ben Safdi 1406.0507 MIT / University of Michigan Y. Kahn, B.S., J. Thaler, PRL 2016 ABRA-10 cm collaboration 2017 I QCD gives a mass: f 1016 GeV m π m 10−9 eV a ≈ f π ≈ f a a I Axion couples to QED 1 µν αEM = gaγγaFµνF~ gaγγ L −4 / fa I Axion (field) can make up all of dark matter Axions -22 -12 -3 9 12 27 log10(ma/eV) I Axion solves strong CP problem (neutron EDM) 2 a g ~µν axion = 2 GµνG L −fa 32π Peccei, Quinn 1977; Weinberg 1978; Wilczek 1978 I Axion couples to QED 1 µν αEM = gaγγaFµνF~ gaγγ L −4 / fa I Axion (field) can make up all of dark matter Axions -22 -12 -3 9 12 27 log10(ma/eV) I Axion solves strong CP problem (neutron EDM) 2 a g ~µν axion = 2 GµνG L −fa 32π I QCD gives a mass: f 1016 GeV m π m 10−9 eV a ≈ f π ≈ f a a Peccei, Quinn 1977; Weinberg 1978; Wilczek 1978 I Axion (field) can make up all of dark matter Axions -22 -12 -3 9 12 27 log10(ma/eV) I Axion solves strong CP problem (neutron EDM) 2 a g ~µν axion = 2 GµνG L −fa 32π I QCD gives a mass: f 1016 GeV m π m 10−9 eV a ≈ f π ≈ f a a I Axion couples to QED 1 µν αEM = gaγγaFµνF~ gaγγ L −4 / fa Peccei, Quinn 1977; Weinberg 1978; Wilczek 1978 Axions -22 -12 -3 9 12 27 log10(ma/eV) I Axion solves strong CP problem (neutron EDM) 2 a g ~µν axion = 2 GµνG L −fa 32π I QCD gives a mass: f 1016 GeV m π m 10−9 eV a ≈ f π ≈ f a a I Axion couples to QED 1 µν αEM = gaγγaFµνF~ gaγγ L −4 / fa I Axion (field) can make up all of dark matter Peccei, Quinn 1977; Weinberg 1978; Wilczek 1978 Motivation PDG • Search for 10-14-10-6 eV pseudoscalar (ALP) dark matter • Motivated by Strong CP Problem and String Theory • Created via realignment mechanism • Couples weakly to E&M: 1 g aF F˜µ⌫ L ⊃−4 aγγ µ⌫ Reyco Henning PATRAS 2017 — May 16,2017 ABRACADABRA !3 Motivation PDG • Search for 10-14-10-6 eV pseudoscalar (ALP) dark matter • Motivated by Strong CP Problem and String Theory • Created via realignment mechanism • Couples weakly to E&M: 1 g aF F˜µ⌫ L ⊃−4 aγγ µ⌫ Reyco Henning PATRAS 2017 — May 16,2017 ABRACADABRA !3 Motivation PDG • Search for 10-14-10-6 eV pseudoscalar (ALP) dark matter • Motivated by Strong CP Problem and String Theory • Created via realignment mechanism • Couples weakly to E&M: 1 g aF F˜µ⌫ L ⊃−4 aγγ µ⌫ Reyco Henning PATRAS 2017 — May 16,2017 ABRACADABRA !3 Motivation PDG • Search for 10-14-10-6 eV pseudoscalar (ALP) dark matter • Motivated by Strong CP Problem and String Theory • Created via realignment mechanism • Couples weakly to E&M: 1 g aF F˜µ⌫ L ⊃−4 aγγ µ⌫ Reyco Henning PATRAS 2017 — May 16,2017 ABRACADABRA !3 I Magnetoquasistatic approximation: new electric current that follows B-field lines @a B = g B r × aγγ @t 1 2 2 I Locally: a(t) a sin(m t) and m a = ρ ≈ 0 a 2 a 0 DM I Jeff = gaγγ 2 ρDMB sin(mat) p Axion dark matter modifies Maxwell’s equations I Recall axions also couple to QED: 1 µν αEM = gaγγaFµνF~ gaγγ L −4 / fa 1 2 2 I Locally: a(t) a sin(m t) and m a = ρ ≈ 0 a 2 a 0 DM I Jeff = gaγγ 2 ρDMB sin(mat) p Axion dark matter modifies Maxwell’s equations I Recall axions also couple to QED: 1 µν αEM = gaγγaFµνF~ gaγγ L −4 / fa I Magnetoquasistatic approximation: new electric current that follows B-field lines @a B = g B r × aγγ @t Axion dark matter modifies Maxwell’s equations I Recall axions also couple to QED: 1 µν αEM = gaγγaFµνF~ gaγγ L −4 / fa I Magnetoquasistatic approximation: new electric current that follows B-field lines @a B = g B r × aγγ @t 1 2 2 I Locally: a(t) a sin(m t) and m a = ρ ≈ 0 a 2 a 0 DM I Jeff = gaγγ 2 ρDMB sin(mat) p Axion dark matter generates magnetic flux Y. Kahn, B.S., J. Thaler, PRL 2016 Superconducting pickup loop R r a h B0 Two readout strategies Broadband Resonant M Δω M L L i Lp L p C L R Li Better at low frequency Better at high frequency f [Hz] 102 103 104 105 106 107 108 109 8 10− 10 CAST 10− IAXO ] 12 1 10− − [GeV ADMX γγ a g 14 10− 16 10− KSVZ 12 11 10 9 8 7 6 5 10− 10− 10− 10− 10− 10− 10− 10− ma [eV] ABRA-10 cm (happening now!) f [Hz] 102 103 104 105 106 107 108 109 8 10− ABRA-10cm (Broad.) 10 CAST 10− IAXO ] 12 1 10− − Broadband Resonant [GeV M Δω ADMX M γγ a g 14 10− L L i Lp L p C L R Li 16 10− 1 month Better at low frequency Better at high frequency B = 1 T KSVZ 12 11 10 9 8 7 6 5 10− 10− 10− 10− 10− 10− 10− 10− ma [eV] ABRA-10 cm (happening now!) f [Hz] 102 103 104 105 106 107 108 109 8 10− ABRA-10cm (Broad.) ABRA-10cm (Res.) 10 CAST 10− IAXO ] 12 1 10− − Broadband Resonant [GeV M M ADMX γγ Δω a g 14 10− L L i Lp L p C L R Li 16 10− Better at low frequency Better at high frequency 1 month B = 1 T KSVZ 12 11 10 9 8 7 6 5 10− 10− 10− 10− 10− 10− 10− 10− ma [eV] ABRA-Gen2 f [Hz] 102 103 104 105 106 107 108 109 8 10− ABRA-10cm (Broad.) ABRA-100cm (Broad.) ABRA-300cm (Broad.) CAST 10 10 − ABRA-10cm (Res.) ABRA-100cm (Res.) ABRA-300cm (Res.) IAXO ] 12 1 10− − [GeV ADMX γγ a g 14 10− 16 10− 1 year B = 5 T KSVZ 12 11 10 9 8 7 6 5 10− 10− 10− 10− 10− 10− 10− 10− ma [eV] The MIT prototype: ABRACADABRA-10 cm I ABRACADABRA: A Broadband/Resonant Approach to Cosmic Axion Detection with an Amplifying B-field Ring Apparatus I People (LNS+CTP, PSFC, Princeton, UNC, UMich): Janet Conrad, Joe Formaggio, Sarah Heine, Reyco Henning, Yoni Kahn, Joe Minervini, Jonathan Ouellet, Kerstin Perez, Alexey Radovinsky, B.S., Jesse Thaler, Daniel Winklehner, Lindley Winslow I Funded by the NSF! ABRACADABRA-10Cosmic Axion cm Detection at MIT with an AmplifyingABRACADABRA-10cm B-field Ring Apparatus 12 cm Super conducting pickup cylinder 12 cm Bmax ≈ 1 T Counter-wound superconducting coils. Reyco Henning PATRAS 2017 — May 16,2017 ABRACADABRA !16 Ben Safdi Massachusetts Institute of Technology 2015 ABRA-10 cm Jonathan Ouellet (postdoc) Lindley Winslow (PI) ABRA-10 cm ABRA-10 cm Light bosonic dark matter future I MIT: ABRA-10 cm followed by ABRA-1 m (B 5 T) ∼ I Axions and light bosonic dark matter well motivated by strong-CP problem and high-scale physics (e.g., compactified string theory) I New ideas to search for ultra-light scalars, dark-photons, etc. (laboratory experiments + astrophysics) 17 19 I e.g., CASPEr experiment (fa 10 10 GeV) ∼ 17− 19 I Black Hole superradiance (fa 10 10 GeV) 15 ∼ − I Florida LC circuit (fa 10 GeV) 11 ∼ I ADMX-HF (f 10 GeV) a ∼ I CMB (isocurvature + ∆Neff) I DM-radio (dark photons) Questions? Axion backup 2 I Axion effective current: I R J eff ∼ eff Ieff I B R g 2 ρ B0 sin(m t) ∼ R ∼ aγγ DM a 16 −22 I f = 10 GeV, B0p 5 T, R 4 m: B 10 T (KSVZ) a ∼ ∼ ∼ Axion dark matter generates magnetic flux Superconducting pickup loop R r I Estimate B-field induced through pickup loop (r = a = h = R) a h B0 Axion dark matter generates magnetic flux Superconducting pickup loop R r I Estimate B-field induced through pickup loop (r = a = h = R) a 2 I Axion effective current: I R J eff ∼ eff Ieff I B R g 2 ρ B0 sin(m t) h ∼ R ∼ aγγ DM a 16 B0 −22 I f = 10 GeV, B0p 5 T, R 4 m: B 10 T (KSVZ) a ∼ ∼ ∼ I Scale to R 4 m 1=2 ≈ 20 I S 5 10− T=pHz B ≈ × I t = 1 year interrogation time for GUT scale axion 2 3 I Coherence time: τ 2π=(mav ) 10 s (v 10− ) 1∼=2 1=4 ∼ 22 ∼ I S=N = 1 for B = S (tτ)− 10− T B ∼ Broadband estimate M R Lp L Li I Example from MRI application: (Myers et. al. 2007) 1=2 17 I B-field sensitivity: S 6:4 10− T=pHz B ≈ × I R 3:3 cm ≈ I t = 1 year interrogation time for GUT scale axion 2 3 I Coherence time: τ 2π=(mav ) 10 s (v 10− ) 1∼=2 1=4 ∼ 22 ∼ I S=N = 1 for B = S (tτ)− 10− T B ∼ Broadband estimate M R Lp L Li I Example from MRI application: (Myers et. al. 2007) 1=2 17 I B-field sensitivity: S 6:4 10− T=pHz B ≈ × I R 3:3 cm ≈ I Scale to R 4 m 1=2 ≈ 20 I S 5 10− T=pHz B ≈ × 1=2 1=4 22 I S=N = 1 for B = S (tτ)− 10− T B ∼ Broadband estimate M R Lp L Li I Example from MRI application: (Myers et.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    48 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us