Linear Algebra

Linear Algebra

Linear algebra Integer linear programming: formulations, techniques and applications. 03 Santiago Valdés Ravelo [email protected] August, 2020 “Algebra is the offer made by the devil to the mathematician. The devil says: I will give you this powerful machine, it will answer any question you like. All you need to do is give me your soul: give up geometry and you will have this marvellous machine.”1 Michael F. Atiyah. 1Michael F. Atiyah, “Special Article: Mathematics in the 20푡ℎ Century”, Bulletin of the London Mathematical Society, 2002, p. 7. 1 Vectors 2 Matrices 3 Linear systems 4 Exercises Vectors Vectors Definition Finite sequence of real values: ⎫ value 1 } } } value 2 } } } value 3 } 푛 + ⎬ 푣 ∈ ℝ , where 푛 ∈ ℕ … } } value 푛 − 1 } } } value 푛 } } ⎭ Vectors Special vectors. Null Vector with all the elements equal to zero (null): ⎫ 0 } } 0 } } 푣 = [0, 0, … , 0]푡 } … 푣 ⎬ } 0 } } } 0 } ⎭ Vectors Special vectors. Unit Vector with one element equals to 1 and the rest equal to 0: ⎫ 0 } } } … } } 0 } } 푣 = [0, … , 0, 1, 0, … , 0]푡 } 1 ⎬ 푣 } 0 } } } … } } 0 } } * unit vectors are those whose norm is equals to 1 ⎭ Vectors Operations. Sum Sum the elements at the same position: ⎫ } 푛 푣1 + 푤1 } 푣, 푤 ∈ ℝ ∶ } } 푣2 + 푤2 } 푣 + 푤 = [푣 , 푣 , … , 푣 ]푡 + [푤 , 푤 , … , 푤 ]푡 푣 + 푤 1 2 푛 1 2 푛 … ⎬ } } 푡 푣푛 + 푤푛 } 푣 + 푤 = [푣1 + 푤1, 푣2 + 푤2, … , 푣푛 + 푤푛] } } ⎭ Vectors Operations. Scalar multiplication Multiply each element of the vector by the scalar (real number): ⎫ } 푛 휆 × 푣1 } 휆 ∈ ℝ, 푣 ∈ ℝ ∶ } } 휆 × 푣2 } 휆 × 푣 = 휆 × [푣 , 푣 , … , 푣 ]푡 휆 × 푣 1 2 푛 … ⎬ } } 푡 휆 × 푣푛 } 휆 × 푣 = [휆 × 푣1, 휆 × 푣2, … , 휆 × 푣푛] } } ⎭ Vectors Operations. Internal product Multiply the elements at the same position and sum the multiplication results: 푣, 푤 ∈ ℝ푛 ∶ 푤1 ⎡ 푤 ⎤ 푣푡 × 푤 = [푣 , 푣 , … , 푣 ] × ⎢ 2 ⎥ 1 2 푛 ⎢ … ⎥ ⎣ 푤푛 ⎦ 푡 푛 푣 × 푤 = ∑푖=1 (푣푖 × 푤푖) * the result of the internal product is a scalar. Vectors Linear combination Given 푚 vectors: 푣1, 푣2, … , 푣푚 ∈ ℝ푛. A linear combination of them is: 푚 1 2 푚 푖 휆1 × 푣 + 휆2 × 푣 + … + 휆푚 × 푣 = ∑ (휆푖 × 푣 ). 푖=1 Where, 휆1, 휆2, …, 휆푚 are scalars: 휆1, 휆2, … , 휆푚 ∈ ℝ. Vectors Linear combination 1 2 푚 푚 푖 푣1 푣1 푣1 ∑푖=1 휆푖 × 푣1 1 2 푚 푚 푖 푣2 푣2 푣2 ∑푖=1 휆푖 × 푣2 휆1× + 휆2× + … + 휆푚× = … … … … 1 2 푚 푚 푖 푣푛 푣푛 푣푛 ∑푖=1 휆푖 × 푣푛 Vectors Affine combination If the sum of the scalars in a linear combination is equal to 1, then the combination is an AFFINE combination. Affine combinations are linear combinations where: 푚 ∑ 휆푖 = 1. 푖=1 Vectors Conical combination If the the scalars in a linear combination are non-negative, then the combination is a CONICAL combination. Conical combinations are linear combinations where: 휆푖 ∈ ℝ+, ∀푖 ∈ {1, 2, … , 푚}. Vectors Convex combination If a linear combination is affine and conical, then the combination is a CONVEX combination. Convex combinations are linear combinations where: 푚 ∑ 휆푖 = 1 푖=1 휆푖 ∈ ℝ+, ∀푖 ∈ {1, 2, … , 푚}. Vectors Linear subspace 푆 ⊆ ℝ푛 is a LINEAR SUBSPACE if for any two vectors 푣, 푤 ∈ 푆 and any two scalars 훼, 훽 ∈ ℝ, the vector resulting from the linear combination 훼 × 푣 + 훽 × 푤 is in 푆. Vectors Affine subspace 푆 ⊆ ℝ푛 is an AFFINE SUBSPACE if for any two vectors 푣, 푤 ∈ 푆 and any two scalars 훼, 훽 ∈ ℝ, where 훼 + 훽 = 1, the vector resulting from the affine combination 훼 × 푣 + 훽 × 푤 is in 푆. * Every linear subspace is an affine subspace. However, the opposite does not hold true. Vectors Conical set 푆 ⊆ ℝ푛 is a CONICAL SET if for any two vectors 푣, 푤 ∈ 푆 and any two non-negative scalars 훼, 훽 ∈ ℝ+, the vector resulting from the conical combination 훼 × 푣 + 훽 × 푤 is in 푆. * Every linear subspace is a conical set. However, the opposite does not hold true. Vectors Convex set 푆 ⊆ ℝ푛 is a CONVEX SET if for any two vectors 푣, 푤 ∈ 푆 and any two non-negative scalars 훼, 훽 ∈ ℝ+, where 훼 + 훽 = 1, the vector resulting from the convex combination 훼 × 푣 + 훽 × 푤 is in 푆. * Every conical, affine or linear subspace is a convex set. However, the opposite does not holdtrue. Vectors Linear independence The vectors 푣1, 푣2, … , 푣푚 ∈ ℝ푛 are LINEARLY INDEPENDENT if there exists only one linear combination resulting in the null vector, and is when all the scalars of the combination are equal to zero, i.e.: 푚 푖 푡 ∑ (휆푖 × 푣 ) = [0, 0, … , 0] ⇒ 휆푖 = 0, ∀푖 ∈ {1, 2, … , 푚} 푖=1 Vectors Affine independence The vectors 푣1, 푣2, … , 푣푚 ∈ ℝ푛 are AFFINELY INDEPENDENT if: 푚 푖 푡 ∑푖=1 (휆푖 × 푣 ) = [0, 0, … , 0] ⇒ 휆푖 = 0, ∀푖 ∈ {1, 2, … , 푚} 푚 ∑푖=1 휆푖 = 0 * Any set of linearly independent vectors is affine independent. However, the opposite does not hold true. Vectors Linear span (hull) The LINEAR SPAN (also called LINEAR HULL) of a set 푆 ⊆ ℝ푛 is the subspace containing all the linear combinations of the elements of 푆: 푚 푖 푖 푠푝푎푛(푆) = {∑ (휆푖 × 푣 ) | 푚 ∈ ℕ, 푣 ∈ 푆, 휆푖 ∈ ℝ} 푖=1 Vectors Affine span (hull) The AFFINE SPAN (also called AFFINE HULL) of a set 푆 ⊆ ℝ푛 is the subspace containing all the affine combinations of the elements of 푆: 푚 푚 푖 푖 푎푓푓(푆) = {∑ (휆푖 × 푣 ) | 푚 ∈ ℕ, 푣 ∈ 푆, 휆푖 ∈ ℝ, ∑ 휆푖 = 1} 푖=1 푖=0 Vectors Conical hull The CONICAL HULL of a set 푆 ⊆ ℝ푛 is the set containing all the conical combinations of the elements of 푆: 푚 푖 푖 푐표푛푒(푆) = {∑ (휆푖 × 푣 ) | 푚 ∈ ℕ, 푣 ∈ 푆, 휆푖 ∈ ℝ+} 푖=1 Vectors Convex hull The CONVEX HULL of a set 푆 ⊆ ℝ푛 is the set containing all the convex combinations of the elements of 푆: 푚 푚 푖 푖 푐표푛푣푒푥(푆) = {∑ (휆푖 × 푣 ) | 푚 ∈ ℕ, 푣 ∈ 푆, 휆푖 ∈ ℝ+, ∑ 휆푖 = 1} 푖=1 푖=0 Vectors Basis A set 푆 ⊂ ℝ푛 is a BASIS of ℝ푛, if the elements of 푆 are linearly independent and the linear span of 푆 is ℝ푛. Remark. If 푆 is a basis of ℝ푛, then for any vector 푣 ∈ ℝ푛, there exists exactly one linear combination of the vectors of 푆 equals to 푣. Vectors Change of basis Consider a basis 푆 of ℝ푛 and a vector 푣 ∈ ℝ푛. If the vector 푤 ∈ 푆 is multiplied by a scalar 휆 ≠ 0 in the linear combination of the elements of 푆 that results in 푣, then (푆 ⧵ {푤}) ∪ {푣} is a basis of ℝ푛. Matrices Matrices Definition Rectangular array of real values: ⎫ value 1, 1 value 1, 2 … value 1, 푛 } } } value 2, 1 value 2, 2 … value 2, 푛 } 푚×푛 + ⎬ 퐴푚×푛 ∈ ℝ ,(푚, 푛 ∈ ℕ ) … … … … } } value 푚, 1 value 푚, 2 … value 푚, 푛 } } ⎭ Matrices Rows 푛 푎푖. ∈ ℝ is the 푖-th row of of the matrix 퐴푚×푛 (1 ≤ 푖 ≤ 푚): value 1, 1 value 1, 2 … value 1, 푛 … … … … value 푖, 1 value 푖, 2 … value 푖, 푛 푎푖. → … … … … value 푚, 1 value 푚, 2 … value 푚, 푛 Matrices Columns 푚 푎.푗 ∈ ℝ is the 푗-th column of the matrix 퐴푚×푛 (1 ≤ 푗 ≤ 푛): 푎.푗 ↓ value 1, 1 … value 1, 푗 … value 1, 푛 value 2, 1 … value 2, 푗 … value 2, 푛 … … … … … value 푚, 1 … value 푚, 푗 … value 푚, 푛 Matrices Special matrices. Null Each column of the matrix is a null vector (i.e. all elements are equal to zero): 0 … 0 … 0 … … … … … 0 … 0 … 0 … … … … … 0 … 0 … 0 Matrices Special matrices. Identity Square matrix (푚 = 푛), where 푎.푗 is the unit vector where the value 1 occurs at position 푗 (1 ≤ 푗 ≤ 푛) (i.e. all elements are equal to zero except for the main diagonal, whose elements are equal to one): ⎫ 1 0 0 … 0 } } 0 1 0 … 0 } } } 0 0 ⋱ ⋱ … 퐼 ∈ ℝ푛×푛 ⎬ 푛×푛 ⋱ ⋱ } … … 0 } } } 0 0 … 0 1 } ⎭ Matrices Special matrices. Lower triangular A square matrix is LOWER TRIANGULAR if all the values above the main diagonal are equal to zero (i.e. if 푖 < 푗, then 푎푖,푗 = 0): 푎1,1 0 0 … 0 푎2,1 푎2,2 0 … 0 ⋱ 푎3,1 푎3,2 푎3,3 … … … ⋱ ⋱ 0 푎푛,1 푎푛,2 … 푎푛,푛−1 푎푛,푛 Matrices Special matrices. Upper triangular A square matrix is UPPER TRIANGULAR if all the values below the main diagonal are equal to zero (i.e. if 푖 > 푗, then 푎푖,푗 = 0): 푎1,1 푎1,2 푎1,3 … 푎1,푛 0 푎2,2 푎2,3 … 푎2,푛 ⋱ 0 0 푎3,3 … ⋱ ⋱ … … 푎푛−1,푛 0 0 … 0 푎푛,푛 Matrices Operations. Scalar multiplication Multiply each element of the matrix by the scalar: ⎫ } 휆 × 푎1,1 휆 × 푎1,2 … 휆 × 푎1,푛 } 푚×푛 } 휆 ∈ ℝ, 퐴푚×푛 ∈ ℝ ∶ } 휆 × 푎2,1 휆 × 푎2,2 … 휆 × 푎2,푛 } 휆 × 퐴 ∈ ℝ푚×푛 … … … … ⎬ } } 휆 × 푎푚,1휆 × 푎푚,2 … 휆×푎푚,푛 } } } ⎭ Matrices Operations. Scalar sum Sum each element of the matrix with the scalar: ⎫ } 휆 + 푎1,1 휆 + 푎1,2 … 휆 + 푎1,푛 } 푚×푛 } 휆 ∈ ℝ, 퐴푚×푛 ∈ ℝ ∶ } 휆 + 푎2,1 휆 + 푎2,2 … 휆 + 푎2,푛 } 휆 + 퐴 ∈ ℝ푚×푛 … … … … ⎬ } } 휆 + 푎푚,1휆 + 푎푚,2 … 휆+푎푚,푛 } } } ⎭ Matrices Operations. Sum Sum the elements at the same position (row and column): ⎫ } 푎1,1 + 푏1,1 푎1,2 + 푏1,2 … 푎1,푛 + 푏1,푛 } 푚×푛 }퐴푚×푛, 퐵푚×푛 ∈ ℝ ∶ } 푎2,1 + 푏2,1 푎2,2 + 푏2,2 … 푎2,푛 + 푏2,푛 } 퐴 + 퐵 ∈ ℝ푚×푛 … … … … ⎬ } } 푎푚,1 + 푏푚,1 푎푚,2 + 푏푚,2 … 푎푚,푛 + 푏푚,푛 } } } ⎭ Matrices Operations.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    66 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us