Arylgermanes As Linkers for Solid Phase Synthesis

Arylgermanes As Linkers for Solid Phase Synthesis

Aromatics in Synthesis Alan Spivey [email protected] Format and scope of presentation • Formation of metal aryls: – Reductive metalation (Barbier conditions) – Halogen-metal exchange (halogen-lithium and Grignard metathesis) – Deprotonation [directed ortho-lithiation (DoM)] • Transmetalation & cross-coupling reactions: – Transmetalation to Cu, Zn, Sn, B, Ge, & Ce – Kumada-Corriu, Negishi, Stille, Suzuki, Hiyama/Denmark, Heck, Sonogashira & sp3 • Buchwald/Hartwig amination & etherification: – Amination of aryl chlorides – Biaryl ether formation • Birch reduction: – Reduction/alkylation • 'De novo' aryl synthesis reactions: – Fischer carbene chemistry (Dötz reaction) – Cobalt mediated [2+2+2] reactions (Volhardt reaction) – Ring Closing Metathesis (RCM) Utility of aryl metals - overview Ar R Bn R Kumada-Corriu R HO R Kharasch R Negishi R R Suzuki O BnBr Suzuki Stille Stille Sonogashira R Negishi R OH M Heck, Suzuki M' RCHO transmetalate Stille, Negishi R R R R M = Li, MgX, ZnX cyanation M' = ZnX, SnR3, SiX3, BR2 CN DMF CHO boronate Baeyer-Villager Buchwald/Hartwig amination & R R RCN CO2(s) etherification COR CO2H OH OAr/R NR2 Beller Angew. Chem Int. Ed. 2003, 42, 1661 (DOI) R R R R R Reductive metalation • By using an aryl halide and an activated free metal (Mg, Li, Zn) – Review: Yus Tetrahedron 2003, 59, 9255(DOI); Clayden ‘Organolithiums: Selectivity for Synthesis’ 2002 (Pergamon) Mg(m), Et2O, Δ Ar-Mg-X Li(m), THF, Δ NB. alloys with 1-2% sodium often Ar-X Ar-Li employed and/or metals with high surface area e.g. 'Reike metals' X = Cl, Br, I Zn, THF, Δ Ar-Zn-X – Mechanism: Single Electron Transfer (SET): Andrieux J. Am. Chem. Soc. 1986, 108, 638 (DOI) Ar-X + Mg Ar-X + Mg Ar + Mg-X Ar-Mg-X Ar-X + Li Ar-X + Li Li + Ar + Li-X Ar-Li + Li-X – Features: • Wurtz coupling a side reaction particularly for iodides and bromides • Requires elevated temperatures (i.e. >25 °C) – e.g. for pyridines (using Barbier in situ electrophile quenching) • Sugimoto Tet. Lett. 2002, 43, 3355 (DOI)& J. Org. Chem. 2003, 68, 2054 (DOI) Mg* (4eq), THF, rt 30min OH 2-I [67%] I Mg* = activated Mg by reduction of 3-I [73%] N Me t MgCl2 by Li and naphthalene in THF Me O (3eq) N Bu 4-I [64%] Me Reductive metalation – zincation promoted by LiCl • reductive zincation promoted by LiCl: – Knochel Angew. Chem. Int. Ed. 2006, 45, 6040 (DOI) Zn·LiCl (1.4eq),THF,RT Cl 10 min O [94%] I S I I S ZnI·LiCl I S CuCN.2LiCl O NB. NO zincation using Zn (m) alone Zn·LiCl (1.4 eq), THF, RT 10 min Br S CuCN.2LiCl ClLi·IZn S O [87%] O • ortho-directing affect of FGs – esters, ketones, aryl sulfonates, acetates, carbamates, triazenes: – Knochel J. Am. Chem. Soc. 2007, 129, 12358 (DOI) I I 5 I Zn·LiCl (1.15 eq), THF, RT Cl tBu 12 h O 7 tBu I N N LiCl·IZn N OTs O OTs [78%] OTs Halogen-metal exchange - overview • By exchange of an aryl halide with an alkyl metal (discovered by Gilman & Wittig) – reviews: Schlosser Synlett 2007, 3096 (DOI) – Hal-M exchange and deprotonation of heterocycles; Knochel Chem. Comm. 2006, 583 (DOI); Schlosser Angew. Chem. Int. Ed. 2005, 44, 376 (DOI); Yus Tetrahedron 2003, 59, 9255(DOI); Clayden ‘Organolithiums: Selectivity for Synthesis’ 2002 (Pergamon); Knochel Chem. Eur. J. 2000, 6, 767 (DOI) NB. use of 2 equiv of t-BuLi common. Irreversibility ensured by 2nd equiv. eliminating X- from t-BuX: SBuLi, THF iPrMgBr, THF Ar-Li Ar-Mg-Br Ar-Br t-BuLi Ar-X Ar-Li st s i 1 eq BuBr PrBr + t-BuLi ++ LiX t-BuX 2nd eq – Mechanism: depends on structure, for aryls halophilic displacement likely: • Driven by thermodynamics: sp3 to sp2 anion Ar Ar-Br + R M Br M Ar-M + RBr R possible intermediate ate complex • Initial complexation of the alkyl metal to the halide supresses competitive addition – Features: • Proceeds at low temperature (e.g. -100 °C); supresses addition to C=N groups & deprotonation • Rate of exchange: Ar-I > Ar-Br > Ar-Cl >> Ar-F • Solvent dependent selectivity due to aggregation & Schlenck equilibrium (Grignard reagents): 2 Ar-Mg-X Ar-Mg-Ar + X-Mg-X Halogen-Mg exchange • iPrMgBr at -40°C: – indole synthesis: Knochel Org. Lett. 2002, 4, 1819 (DOI) Y 1) iPrMgBr, THF, -20°C Y Y H NNMe2 2) CuCN·2LiCl NNMe2 H3O N Me X I 3) OMe X Br X MeO X = CO2Et, Y = I [90%] X = CO2Et, Y = I [75%] X = NC=NMe2, Y = H [71%] X = NC=NMe2, Y = H [68%] – one-pot Mg-halogen exchange / Kharasch cross-coupling: – Quéguiner Tetrahedron 2002, 58, 4429 (DOI); Knochel Synlett 2002, 1008 (DOI) 1) iPrMgCl, THF, -40°C I EtO2C 2) Pd(dba)2 cat. dppf, -40°C, 6h CN N EtO2C [87%] CN NCl Halogen-Mg exchange – advances • LiCl acceleration: iPrMgCl·LiCl participates in Br-Mg exchange faster than iPrMgCl itself: – Knochel Angew. Chem. Int. Ed. 2004, 43, 3333 (DOI) & Org. Lett. 2004, 6, 4215 (DOI) & Chem. Commun. 2005, 543 (DOI); & Synlett 2007, 980 (DOI) & Chem. Commun. 2007, 2075 (with free carboxylic acids) (DOI) – e.g. Knochel Chem. Commun. 2006, 726 (>998:1 regioselectivity) (DOI) iPrMgCl·LiCl Br Br Br MgCl Br E THF, -30 °C, 2 h E N OTs N OTs N OTs [95%] 8 examples [71-93%] • chelating diamine supresses addition reactions – pyrimidine I-Mg exchange: – Wang Org. Lett. 2006, 8, 3141 (DOI) H H N N H N iPrMgCl N N N ClMg ClMg N THF, 0 °C ClMg ~70% ~20% ~10% N I N + O N Cl ~exclusively via Mg N N ClMg H N N ClMg Halogen-Zn exchange i • using Pr2Zn & Li(acac) (presumed to form ‘ate’ complex): – also tolerates ketones and aldehydes – Knochel Angew. Chem. Int. Ed. 2004, 43, 1017 (DOI) • using Et2Zn & a phosphazine base (tBu-P4) as catalyst: – tolerates esters – Kondo Chem. Commun. 2006, 3549 (DOI) Halogen-Cu exchange • even wider functional group tolerance: – using lithium di(neopentyl)cuprates - tolerates ketones and aldehydes • Knochel Angew. Chem. Int. Ed. 2002, 41, 3263 (DOI) I 1) Neopent2CuLi, THF, -40-0°C [80%] OO 2) allyl bromide Neopent – using lithium di(neophyl)cuprates – tolerates highly functionalised indoles • Knochel Org. Lett. 2004, 6, 1665 (DOI) & Chem. Commun. 2006, 2486 (DOI) I I 1) Nphyl2CuLi, 25°C Ph I N 2) DMAP cat., PhCOCl N O SO2Ph [84%] SO2Ph 1) Nphyl2CuLi, -78°C 2) COCl [65%] 1) NH2NH2.H2O Nphyl 2) EtOH, Δ O N O [88%] N N N Ph H Ph SO2Ph Deprotonation – overview • Reviews: Schlosser Synlett 2007, 3096 (DOI) – Hal-M exchange and deprotonation of heterocycles; Schlosser Angew. Chem. Int. Ed. 2005, 44, 376 (DOI); Clayden ‘Organolithiums: Selectivity for Synthesis’ 2002 (Pergamon). • Deprotonation of benzene derivatives: – thermodynamically possible for alkyl metals (pKa BuH ~45, pKa ArH ~38), but kinetically slow – no regiocontrol (without directing groups) • Deprotonation of aromatic heterocycles (ortho- to ring heteroatoms): – Thermodynamically more favourable (pKa ArC=NH ~35) and kinetically faster than for benzene particularly: • ortho to ring N • ortho to directing substituents (DoM – see later) DG DG BUT: inductive and chelative pair-pair stabilisation stabilisation electron N Li N Li N Li repulsion – Kinetics: due to: DG DG Complex Induced inductive acidification and Li Proximity Effects H of ortho-protons R # NNH stabilising TS – Low temperatures & bulky bases required to supress addition reactions to C=N function: • Quéguiner Tetrahedron 2001, 57, 4059 (DOI) RLi as RLi as nucleophile base + RH (g) N R addition N lithiation N Li Li Thermodynamic vs kinetic deprotonation (Li) • thermodynamic deprotonation using hindered lithium/magnesium amide bases: – amine anions are poorly nucleophilic and undergo slow competitive addition reactions – reversible equilibration, success depends on the pKa of the ortho-proton being lower than that of the amine: LiTMP > LDA ArH + R2NLi ArLi + R2NH pK 37.3 N N a pKa 35.7 reversible Li Li • kinetic deprotonation using alkyl lithium bases (RLi): – branched alkyl lithiums undergo slow competitive nucleophilic addition – irreversible loss of RH, maximum basicity of alkyl lithiums in non-co-ordinating solvents e.g. hexane with TMEDA co-solvent – review (structures of lithium complexes): van Koten Angew. Chem. int. Ed. 2005, 44, 1448 (DOI) Me2 Me2N Me2 ArH + RLi ArLi + RH (g) N Li N Li ~ ~ Li pKa ~45 irreversible N Me2N Me2 Me2N • mechanisms - disputed: – acidity due to two factors: i) inductive activation, and ii) Complex Induced Proximity Effects (CIPE) – review: Snieckus & Beak Angew. Chem. Int. Ed. 2004, 43, 2206 (DOI); see also Collum J. Am. Chem. Soc. 2000, 122, 8640 (DOI) & J. Am. Chem. Soc. 2007, 129, 2259 (DOI); Mortier Org. Lett. 2005, 7, 2445 (excellent discussion of specific case of DoM of m- anisic acid) (DOI) Thermodynamic vs kinetic deprotonation (Li) • regioselectivity: kinetically and thermodynamically most acidic protons may differ: – Fort J. Org. Chem. 2003, 68, 2243 (DOI); J. Org. Chem. 2002, 67, 234 (DOI); Org. Lett. 2000, 2, 803 (DOI) 1) LDA (1eq) 1) BuLi-LiDMAE (3eq) 3 TMS THF, -78°C hexane, -78°C 6 2) TMS-Cl 2) electrophile NCl N Cl E NCl thermodynamic kinetic deprotonation deprotonation Electrophile E yield NMe MeI MeI 70 HO 2 I2 I 80 BuLi (2eq) t-BuCHO CH(OH)t-Bu 90 THF MeCOEt MeC(OH)Et 60 -78°C -> 25°C DMF CHO 15 MeSSMe SMe 92 ClBu Sn SnBu 84 O N .BuLi 3 3 Li BuLi-LiDMAE Directed ortho-metalation (DoM, Li) • directed metalation groups (DMGs) attached via carbon can assist ortho-metalation – Reviews: Snieckus & Beak Angew. Chem. Int. Ed. 2004, 43, 2206 (DOI); Sniekus J. Organomet. Chem. 2002, 653, 150 (DOI); Quéguiner J. Het.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    60 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us