Hydrolytic Defluorination • Haloacetate Dehalogenase (EC 3.8.1.3) • Aerobic Bacteria: Pseudomonas Spp., Moraxella Sp

Hydrolytic Defluorination • Haloacetate Dehalogenase (EC 3.8.1.3) • Aerobic Bacteria: Pseudomonas Spp., Moraxella Sp

Bioremediation of PFAS: Promise and Challenges Yujie Men Ph.D., Assistant Professor December 4, 2020 #SerdpEstcp2020 Outline Part 1: History of microbial cleavage of C–F in organofluorines Part 2: Current research status on PFAS biotransformation Part 3: Implications in biotechnologies for PFAS remediation 2 #SerdpEstcp2020 Part 1: Microbial cleavage of C–F in organofluorines C−F bond and bioavailability • C–F bond: the strongest single bond in nature Bond kJ/mol Bond kJ/mol C‒F 439 C‒C 347 C‒H 414 C‒Cl 331 C‒O 351 C‒N 293 • Microbial cleavage of C–F: thermodynamically feasible, kinetically hindered ∆G0 (kJ/mol) Reaction Defluorination Dechlorination Tetrahalomethane → Trihalomethane + H+ + halide‒ -89 -188 (Dolfing 2003; Parsons et al., 2008) 3 #SerdpEstcp2020 Part 1: Microbial cleavage of C–F in organofluorines Hydrolytic defluorination • Haloacetate dehalogenase (EC 3.8.1.3) • Aerobic bacteria: Pseudomonas spp., Moraxella sp. B, Burkholderia sp. FA1, Aureobacterium sp. strain RH025 • Substrate: monofluoroacetate • No reports on PFAS as substrates - + O O O O O H2O F + H O Aureobacterium sp. F - HO - Strain RH025 O Haloacetate O dehalogenase H O + F Monofluoroacetate Glycolate F 2 H OH (Goldman, 1965&1969; Key et al., 1997; Natarajan et al., 2005; Kurihara et al., 2008) 4 #SerdpEstcp2020 Part 1: Microbial C–F bond cleavage in organofluorines Reductive defluorination • Unknown enzyme(s) • Anaerobic, methanogenic communities • Poor reproducibility • Cometabolism • No follow-up reports since 2000 O O O O F - F - F - - O O O H3C O F F F Trifluoroacetate Difluoroacetate Monofluoroacetate Acetate (Visscher et al., 1994; Key et al., 1997; Kim et al., 2000) 5 #SerdpEstcp2020 Part 1: Microbial C–F bond cleavage in organofluorines Reductive defluorination (cont’d) • Pyruvate dehydrogenase from E. coli • Co-factor: thiamin pyrophosphate (TPP) • Substrate: fluoropyruvate; no reports on PFAS as substrates O O PDH-TPP O - + H O CO + F + CH C O + F CH2 C C O 2 2 3 + H O O - OH O OH OH - F CH2 C C O F CH C C O CO2 F CH C F CH C PDH 2 2 2 S S S S + + + N N N N R1 R2 R1 R2 R1 R2 R1 R2 O O = P P R = H N N R1 O O OH 2 2 TPP Enzymatic? Fluoride elimination OH OH N O Spontaneous? F PDH: pyruvate dehydrogenase CH3 C OH O OH H2O CH3 C CH2 C S S + S (Leung and Frey, 1978; Natarajan et al., 2005) N N+ + R1 R2 N R1 R2 R1 R2 6 #SerdpEstcp2020 Part 1: Microbial C–F bond cleavage in organofluorines Reductive defluorination (cont’d) • Maleylacetate reductase from Pseudomonas sp. Strain B12 • Co-factor: NADH • Substrate: 2 position halogenated compounds; no PFAS reported O O 1 5 + maleylacetate HO C + HO2C + 2NADH + H 2 + 2NAD + F 4 reductase CO H 2 3 CO2H 2 F H 6 H H 2-fluoromaleylacetate HB-enz H B-enz B-enz H F HB-enz O O O 1 5 O HO C HO2C HO2C 2 4 HO2C 2 3 CO H CO H CO H 2 2 F CO2H 2 F H 6 F H H H H H H (Kaschabek et al., 1995) 7 #SerdpEstcp2020 Part 1: Microbial C–F bond cleavage in organofluorines Reductive defluorination (cont’d) • Baker’s yeast • Unknown enzyme(s) • Allyl alcohol dependent • Substrate: 4,4,4-trifluoro acetoacetate; no PFAS reported • 4 position defluorination F O Baker's yeast OH O F O allyl alcohol 2.0g/L F CO Et F CO2Et F CO2Et 2 CO2Et F F F F F OH CO2Et (Bertau, 2001) 8 #SerdpEstcp2020 Part 1: Microbial C–F bond cleavage in organofluorines HF elimination • Spontaneous or enzymatic HF elimination • Possible enzymes • Muconate cycloisomerase • Acyl-coA dehydrogenase type of enzymes • Various fluoroaromatics and some PolyFAS O O COOH -HF COOH COOH COOH ring cleavage TCA cycle F O OH spontaneous +H2O F hydroxylase ring -HF HOOC cleavage HOOC O O F HOOC Muconate (Key et al., 1997; Natarajan et al., 2005) cycloisomerase Can microbes defluorinate perfluorinated9 compounds? #SerdpEstcp2020 Part 2: Current research status on PFAS biotransformation PFCA O - PFSA O O - O F F O O F R - O F F n-1 O OH 10 (Wang et al., 2017) #SerdpEstcp2020 Part 2: Current research status on PFAS biotransformation Biotransformation without defluorination F F Hydrolysis F R F F n-1 Commercial surfactants Precursors in AFFF Polyfluoroalkyl phosphate esters (PAP) O F - F R1 O P O R1, R2 = F O F F Sulfate-reducing condition n-1 R 0 2 fluorotelomers Amide0 hydrolysis Ester hydrolysis F F OH F F F n:2 fluorotelomer alcohol n-1 (Yi et al., 2018) (Lee et al., 2010) 11 #SerdpEstcp2020 Part 2: Current research status on PFAS biotransformation Defluorination of PolyFAS Fluorotelomer alcohol (FTOH) Aerobic: F F F F F F F F F F F F O PFCA pathway activated sludge F F soil OH OH F F n:3 acid pathway F F F F F F F F F F pure bacteria 6:2 FTCA 6:2 FTOH anaerobic fungi -HF F O O F F F F F O F F F F F O F F F F O F F F F F F F F F F F F F OH OH OH OH OH F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F 5:3 Acid 3-fluoro 5:3 Acid 6:2 FTUCA 5:3 U Acid 5:3 Acid +H2O -HF slow F FF F O O -HF F FF F O O F H F F F F F F NH2 One-carbon F F FF F F F F F FF F 5:3 ketone aldehyde F removal pathway F F F F F 5:3 U Amide 5:2 preferred Total defluorination: 10-20% ketone 2F Stable products F F F F O F F F F OH F F F F OH F F F (Wang et al., 2005, 2011, 2012; Liu OH F F F et al., 2010, 2013; Kim et al., 2012; F F F F F F F F F F F F O F 12 Butt et al., 2014; Tseng et al., 2014; PFHxA 5:2 sFTOH PFPeA Zhang et al., 2019)#SerdpEstcp2020 Part 2: Current research status on PFAS biotransformation Defluorination of PolyFAS (cont’d) One-carbon removal pathway for n:3 polyfluoroalkyl acid (activated sludge) F F F F O F F F F F F F F F F OH F OH OH F F F F F F F F F F F O F F F O 5:3 Acid 4:3 Acid 4:3 U Acid 14.2% yield F F O F F F F F F F OH O OH F F F F F F F F F F F F F F F F F O OH F OH F F F F F 3:3 Acid F 4:2 sFTOH PFPeA 5.9% yield F F F F F O 5:3 U Acid 0.9% yield 5:2 FTUCA F F O F +H O OH 2 -HF F F F F PFBA 0.8% yield F F F F O -CO F F F F F F F F F 2 F H F OH OH F F F F F F F F F F F F F F F F F F OH O O alpha-OH 5:3 Acid 5:2 Aldehyde 5:2 FTCA All intermediates: 10.2% yield (Wang et al., 2012) 13 #SerdpEstcp2020 Part 2: Current research status on PFAS biotransformation Defluorination of PolyFAS (cont’d) Fluorotelomer sulfonate: more recalcitrant than FTOH/FTCA Activated sludge 90-d removal: 36% Pure culture (Pseudomonas sp.) (Sulfur-limiting; FTS as the sole sulfur source) F O F Complete parent compound removal S O 1:1 formation of fluoride F O F F F O O Partial parent compound removal F S 1:1 formation of fluoride O F F F F F F O F F S Partial parent compound removal F O F F F F F O 1.4:1 formation of fluoride 6:2 FTS (Key, 1996; Key et al., 1997) Total product yield: 6.3% 14 (Wang et al., 2011) #SerdpEstcp2020 Part 2: Current research status on PFAS biotransformation Defluorination of PerFAS • Peroxidase/Laccase-mediated PFOA/PFOS defluorination Enzyme catalyzed oxidative humification reactions (ECOHR) HRP-mediated PFOA removal (6 h): 63% Initiation peroxidase/laccase Total defluorination: <1% Mediator (M) Mediator radical (M•) Laccase-mediated PFOA removal (96 d): 34% Total defluorination: 49% Propagation Laccase-mediated PFOS removal (162 d): 59% Total defluorination: 47% M• + other organic compounds (R) R• Termination • • − • • − F M or R + C7F15COO CnF2n+1 or CmF2mCO2 PFOA Various products • • − • • − M or R + C8F17SO3 CnF2n+1 or CmF2mSO3 PFOS (Luo et al., 2009; 2017; 2018) 15 #SerdpEstcp2020 Part 2: Current research status on PFAS biotransformation Defluorination of PerFAS (cont’d) • Anaerobic defluorination of PFOA and PFOS by Feammox cultures Acidimicrobium sp. strain A6 (A6) and A6 enrichment 3+ Acidic pH (4.5 – 5) with Fe as the primary electron acceptor and NH3 or H2 as the electron donor PFOA PFOS Products of PFOA: Products of PFOS: PFPeA, PFBS, PFHxA, HFBA PFPeA, HFBA 68 – 75% defluorination of PFOA/PFOS removed (Huang & Jaffé, 2019) 16 #SerdpEstcp2020 Part 2: Current research status on PFAS biotransformation Defluorination of PerFAS (cont’d) • Microbial reductive defluorination of branched and unsaturated PerFAS A commercialized dechlorinating enrichment culture - - Primary e donor: lactate or H2; the sole e acceptor: PFAS 17 (Yu et al., 2020) #SerdpEstcp2020 Part 2: Current research status on PFAS biotransformation Defluorination of PerFAS (cont’d) • Defluorination/transformation pathways Red numbers: bond dissociation energy (Yu et al., 2020) 18 #SerdpEstcp2020 Part 2: Current research status on PFAS biotransformation Defluorination of PerFAS (cont’d) • Which are the responsible microorganisms? ? https://doi.org/10.1021/acs.est.0c04483 19 others? #SerdpEstcp2020 Part 3: Implications in biotechnologies for PFAS remediation Current challenges and future directions Challenge 1: Lack knowledge of PFAS-defluorinating enzymes and substrate specificity Direction 1: Identification of defluorinating microorganisms/enzymes Direction 2: Broad screening of defluorinating microorganisms/enzymes and effective PFAS structures Challenge 2: Slow and incomplete defluorination Direction 3: Optimize growth conditions Direction 4: Accelerated/adaptive evolution to select novel biocatalysts Direction 5: Design engineered defluorinating enzymes Covered in SERDP ER20-1541 (Tasks 1-3) 20 #SerdpEstcp2020 Part 3: Implications in biotechnologies for PFAS remediation Application potential • Difficult to be applied alone for PFAS destruction at the current stage • May be a cost-effective option in combination with other treatment approaches in a treatment train system (SERDP ER20-1541 Task 4) Pre-/post-treatment for efficient/deeper defluorination physiochemical Microbial 1 Microbial 2 PFAS Partial Refined Refined Treatment Train defluorination defluorination& defluorination& products mineralization mineralization 21 #SerdpEstcp2020 Part 3: Implications in biotechnologies for PFAS remediation Other implications • A better understanding of the environmental fate of PFAS • Stable end products of various PFAS structures after microbial transformation • Ways to divert persistent end products to more biodegradable ones • A better assessment of PFAS exposure and potential toxicity F F F F F F O F F F F F OH S F O Structure Mobility Toxicity F F F F F F O F O F F F O F F F F OH O F F F F F F F F O F F F OH F F F F F F F F F F F F F O F OH F F F F F F F F F F F F F OH 22 #SerdpEstcp2020 Acknowledgments • M.E.N.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    24 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us