The Integral Role of Tight Junction Proteins in the Repair of Injured Intestinal Epithelium

The Integral Role of Tight Junction Proteins in the Repair of Injured Intestinal Epithelium

International Journal of Molecular Sciences Review The Integral Role of Tight Junction Proteins in the Repair of Injured Intestinal Epithelium Zachary M. Slifer and Anthony T. Blikslager * Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; [email protected] * Correspondence: [email protected] Received: 30 August 2019; Accepted: 14 October 2019; Published: 1 February 2020 Abstract: The intestinal epithelial monolayer forms a transcellular and paracellular barrier that separates luminal contents from the interstitium. The paracellular barrier consists of a highly organized complex of intercellular junctions that is primarily regulated by apical tight junction proteins and tight junction-associated proteins. This homeostatic barrier can be lost through a multitude of injurious events that cause the disruption of the tight junction complex. Acute repair after injury leading to the reestablishment of the tight junction barrier is crucial for the return of both barrier function as well as other cellular functions, including water regulation and nutrient absorption. This review provides an overview of the tight junction complex components and how they link to other plasmalemmal proteins, such as ion channels and transporters, to induce tight junction closure during repair of acute injury. Understanding the components of interepithelial tight junctions and the mechanisms of tight junction regulation after injury is crucial for developing future therapeutic targets for patients experiencing dysregulated intestinal permeability. Keywords: barrier function; tight junction; repair; occludin; claudin; NHE2; ClC-2 1. Intestinal Epithelium as a Selective Barrier The intestine is lined with a monolayer of columnar epithelium that maintains two critical functions: (1) selectively filtering luminal contents, including nutrients, water and electrolytes, to allow for their translocation into the circulation and (2) forming a barrier to prevent the translocation of luminal toxins, commensal or pathogenic microorganisms, and foreign antigens into the circulation [1]. Under homeostatic conditions, these functions are regulated by both transcellular and paracellular pathways, the latter of which are primarily maintained by apical tight junction proteins through paracellular pore and leak permeability pathways [2,3]. The paracellular pathway is associated with the charge and size selective transport of materials through the space between intestinal epithelial cells. Intestinal barrier homeostasis is disrupted through tight junction protein dysregulation, which occurs via a variety of injurious events, including microbial degradation and bacterial toxin exposure, exposure to cytotoxic agents, exposure to pro-inflammatory cytokines such as IFNγ and TNFα, intestinal autoimmune disease such as Celiac disease, and intestinal ischemia [4–9]. The loss of tight junction integrity results in the formation of a third pathway, known as the high-capacity and nonselective unrestricted permeability pathway, which can allow for the unrestricted movement of microorganisms and large proteins across the paracellular space [10]. An inability to rapidly repair the tight junctions in order to restore epithelial barrier function is detrimental to the patient, as it can result in various pathologies, including sepsis and multiple organ dysfunction [11,12]. Therefore, understanding factors that can regulate the tight junction complex during repair of injured intestinal epithelium is crucial for developing future therapeutic targets. Int. J. Mol. Sci. 2020, 21, 972; doi:10.3390/ijms21030972 www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2020, 21, 972 2 of 11 2. Tight Junction Protein Structure Tight junctions are made up of a number of protein elements, including transmembrane claudins (total of 27 mammalian claudins), as well as myelin and lymphocyte (MAL) and related proteins for vesicle trafficking and membrane link (MARVEL) [13–18]. MARVEL domain-containing proteins are a component of a larger group of tight junction-associated MARVEL proteins (TAMPS) that include transmembrane proteins such as occludin and tricellulin [18–20]. Other tight junction-associated transmembrane molecules include junctional adhesion molecules (JAM-1, -2, and -3) that can regulate the formation of tight junctions and migration of neutrophils [21–26]. Additionally, intracellular scaffold proteins such as zonula occludens (ZO) -1, -2, and -3 play an integral role in tight junction protein assembly and link tight junction transmembrane proteins with the actin cytoskeleton [27–30]. Intestinal claudins exist in two different classes: sealing claudins and pore-forming claudins [31]. Increased membrane expression of sealing proteins results in a ‘tighter’ epithelial barrier, further restricting the movement of luminal contents through the paracellular space. Sealing tight junction proteins include claudins-1, -3, -4, -5, -8, -11, -14, 18, and -19 [17]. Alternatively, increased membrane expression of pore-forming proteins (including claudins-2, -10a/-10b, -15, -16, and -17) reduces the selectivity for luminal contents that can pass between epithelial cells, thereby increasing paracellular permeability [17]. Each pore-forming claudin has an ionic charge specificity for cations or anions as well as ionic size selectivity, thereby increasing the permeability for ions based on claudin-specific permeability characteristics. An interesting interaction between the two classes of claudins has been observed with the displacement of pore-forming claudins by sealing claudins. For example, in a claudin-8 transfected Madin–Darby canine kidney II (MDCK II) cell line in which claudin-8 expression occurred in the absence of doxycycline, claudin-8 displacement of claudin-2 was visualized upon immunofluorescent imaging [32,33]. Specifically, claudin-8 served to replace claudin-2 in tight junction strands in this model, which reduced the number of functional paracellular cation pores [32]. Tight junction protein expression in the intestinal tract is tissue- and age-specific. For example, claudin-2 is normally expressed in the human small intestine but is reported to be expressed only in the colonic crypt of fetal humans and absent in the adult colon under homeostatic conditions [34]. Overall, claudin-2 generally exhibits higher expression in leaky epithelial tissues, such as colonic tissues from a subset of patients with inflammatory bowel disease [35]. Additionally, its protein expression was detected throughout the crypt–villus axis of human small intestines but was only detected in undifferentiated crypt cells of human colonic tissue [36]. Other claudins follow suit regarding crypt–luminal axis expression with some pore-forming claudins (-2, -10, -13, -15) being restricted to the intestinal crypt base in murine tissue while other sealing claudins (-3, -4, -7, -8) are expressed in luminal epithelial cells [37–40]. Special Functions of Select Tight Junction Proteins As discussed throughout the remainder of this review, regulation of tight junction proteins is a vital component of epithelial barrier repair after injury. However, specific tight junction proteins can have additional special functions that are species and age dependent. In the case of claudin-4, there is an age-dependent disparity between cellular localization of tight junction proteins [41]. Intestinal porcine claudin-4 is localized to the apical surface of porcine jejunal enterocytes within the first two days of age and only localizes to the lateral surface between adjacent epithelial cells beyond two days of age [41]. This age-specificity of claudin-4 localization in piglet jejunum may be due to immunological naivety that newborn piglets experience. Piglets must be able to acquire and absorb immunoglobulins and other immune-related molecules, including cytokines and antimicrobial peptides, from colostrum within the first day of life to prevent death via bacterial sepsis [42]. It is reported that this age-specific, apical surface localization of claudin-4 occurs in jejunal enterocytes at the same period of time in which the vital immune macromolecules are absorbed into the bloodstream [41]. Therefore, this special function of claudin-4 localization is necessary to allow for the proper uptake of immune molecules by the piglet, and subsequent relocalization to the lateral surface may aid in sealing of the paracellular space between adjacent epithelial cells once the immune constituents are absorbed. Int. J. Mol. Sci. 2020, 21, 972 3 of 11 Another tight junction protein, tricellulin, serves a special function in the tight junction barrier where more than two epithelial cells meet. Tight junction strands between two adjacent epithelial cells typically associated laterally to pair with another tight junction strand, forming bicellular tight junctions between the two cells [43]. However, these bicellular tight junctions are not continuous at tricellular epithelial cell contacts and have therefore been described as tricellular tight junction proteins. While traditional tight junction proteins, such as occludin and claudins, are found in both bicellular and tricellular tight junctions, tricellulin is concentrated to the tricellular tight junction and its knockdown in the EpH4 cell line of immortalized mouse mammary gland epithelium resulted in altered organization of bicellular tight junction proteins [20]. Additionally, tricellulin has been shown to not affect the permeability for ions while forming

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    11 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us