Electron Superhighway: a Quantum Leap for Computing

Electron Superhighway: a Quantum Leap for Computing

Stanford Center at Peking University Public Lecture (in English) Electron Superhighway: A Quantum Leap for Computing SHOUCHENG ZHANG JG Jackson and CJ Wood Professor of Physics, Stanford University Date: May 7, 2014 (Wed) Time: 18:00 – 19:20 Venue: Stanford Center at Peking University, Langrun Yuan, Peking University For the past 60 years, progress in information technology has been governed by Moore's law, which states that the number of transistors on a semiconductor chip doubles every 18 months. However, this remarkable trend is drawing to a close, mostly because the electrons that carry current in chips move like cars driving through a crowded marketplace, swerving around obstacles and dissipating too much of their energy as heat. The recent discovery of a new state of matter, the topological insulator, may lead to a new paradigm of information processing, in which electrons moving in opposing directions are separated into well-ordered lanes, like automobiles on a highway. This talk will explain the basic principles behind this amazing discovery. Shoucheng Zhang was born in Shanghai and received his BS degree from the Free University of Berlin in 1983 and PhD from the State University of New York at Stony Brook in 1987. He joined the faculty at Stanford in 1993. He is a condensed matter theorist known for his work on topological insulators, spintronics and high temperature superconductivity. He is a fellow of the American Physical Society, a fellow of the American Academy of Arts and Sciences and a foreign member of the Chinese Academy of Science. He is the recipient of a number of awards including the Guggenheim fellowship in 2007, the Alexander von Humboldt research prize in 2009, the Johannes Gutenberg research prize in 2010, the Europhysics prize in 2010, the Oliver Buckley prize in 2012, the Dirac Medal and Prize in 2012 and the Physics Frontier Prize in 2013 for his theoretical prediction of the quantum spin Hall effect and topological insulators. REGISTRATION: Online: http://fsi.stanford.edu/events/electronsuperhighway Email: [email protected] (send us your name, title, affiliation and number) Phone inquiry: (86) 10 6274 4170 (Please call 2 days in advance for vehicle entrance) COMING TO SCPKU: (Map: http://scpku.stanford.edu/directions/index.html) Please enter from the Northeast Gate of Peking University with your photo ID. Directional signage will be available starting from this gate. Pre-registration for vehicle entrance inside the campus is required. Please note that there are no parking spaces outside the Center. .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    1 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us