Fourier Sine Integral: for Odd Function F(X): A(W)=0, B (W) = F (V)Sin Wvdv ∞ Π 0 F (X) = B(W)Sin Wx Dw 0

Fourier Sine Integral: for Odd Function F(X): A(W)=0, B (W) = F (V)Sin Wvdv ∞ Π 0 F (X) = B(W)Sin Wx Dw 0

10.8. Fourier Integrals - Application of Fourier series to nonperiodic function ∞ Use Fourier series of a function fL with period L (L ) Ex. 1) Square wave 0 if − L < x < −1 = − < < fL (x) 1 if 1 x 1 (2L > 2) 0 if 1< x < L − < < = = 1 if 1 x 1 f (x) lim fL (x) L→∞ 0 other regions 1 1 π π = 1 = 1 = 1 n x = 2 sin(n / L) Amplitude spectrum a 0 dx , a n cos dx 2L −1 L L −1 L L nπ/ L From Fourier Series to the Fourier Integral ∞ nπ Fourier series of f(x) (period 2L): f (x) = a + ()a cos w x + b sin w x , w = L 0 n n n n n L L ∞, f(x) ? n=1 ∞ = 1 L + 1 L + L fL (x) fL (v)dv cos w n x fL (v)cos w n vdv sin w n x fL (v)sin w n vdv −L −L −L 2L L n=1 π 1 Δw Δw = w + − w = = n 1 n L L π L ∞ ()Δ cos w n x w fL (v)cos w n vdv = 1 L + 1 −L fL (x) fL (v)dv −L π L 2L n=1 + ()Δ sin w n x w fL (v)sin w n vdv −L ∞ = If f ( x ) lim f L ( x ) is absolutely integrable, f ( x ) dx exists L→∞ −∞ 1 ∞∞∞ L ∞, then f (x) = cos wx f (v)cos wvdv + sin wx f (v)sin wvdv dw π 0 −∞ −∞ 1 ∞ 1 ∞ A(w) = f (v)cos wvdv, B(w) = f (v)sin wvdv π −∞ π −∞ ∞ f (x) = []A(w)cos wx + B(w)sin wx dw Fourier Integral 0 Theorem 1: Fourier Integral - f(x): piecewise continuous f(x) can be represented right-hand / left-hand derivatives exist ∞ by Fourier integral. integral f ( x ) dx exists −∞ Applications of the Fourier Integral - Solving differential equations (see 11.6) & integration, … Ex. 2) Single pulse, sine integral f (x) =1 if x <1, 0 if x >1 1 1 2sin w 1 1 A(w) = cos wvdv = , B(w) = sin wvdv = 0 π −1 πw π −1 2 ∞ cos wxsin w f (x) = dw π 0 w Fluctuation caused by the Si func π/ 2 if 0 ≤ x <1 ∞ cos wxsin w dw = π/ 4 if x =1 0 w 0 if x >1 Dirichlet’s discontinuous factor ∞ sin w π u sin w dw = at x = 0 Sine integral: Si(u) = dw 0 w 2 0 w Fourier Cosine and Sine Integrals 2 ∞ Fourier cosine integral: For even function f(x): B(w)=0, A(w) = f (v)cos wvdv ∞ π 0 f (x) = A(w)cos wx dw 0 2 ∞ Fourier sine integral: For odd function f(x): A(w)=0, B (w) = f (v)sin wvdv ∞ π 0 f (x) = B(w)sin wx dw 0 Evaluation of Integrals - Fourier integrals for evaluating integrals Ex. 3) Laplace integrals f (x) = e−kx (x,k > 0) ∞ 2 − 2k / π (a) Fourier cosine integral: A(w) = e kv cos wvdv = π 0 k 2 + w 2 ∞ ∞ − 2k cos wx cos wx π − f (x) = e kx = dw dw = e kx π 0 k 2 + w 2 0 k 2 + w 2 2k ∞ 2 − 2w / π (b) Fourier sine integral: B(w) = e kv sin wvdv = π 0 k 2 + w 2 ∞ ∞ − 2 w sin wx w sin wx π − f (x) = e kx = dw dw = e kx π 0 k 2 + w 2 0 k 2 + w 2 2 10.9. Fourier Cosine and Sine Transforms - Integral transforms: useful tools in solving ODEs, PDEs, integral equations, and special functions … Laplace transforms Fourier transforms from Fourier integral expressions - Fourier cosine transforms, Fourier sine transforms (for real…) Fourier transforms (for complex… ) Fourier Cosine Transforms ∞ Fourier cosine integral for even function f(x): f (x) = A(w)cos wx dw 0 ∞ = 2 = 2 A(w) f (v)cos wvdv, A(w) FC (w) π 0 π ∞ = 2 → FC (w) f (x)cos wxdx : f (x) FC (w) Fourier cosine transform of f(x) π 0 ∞ = 2 → Inverse Fourier cosine transform f (x) FC (w)cos wxdw : FC (w) f (x) π 0 of FC(x) Fourier Sine Transforms ∞ Fourier sine integral for even function f(x): f (x) = B(w)sin wx dw 0 ∞ = 2 = 2 B(w) f (v)sin wvdv, B(w) FS (w) π 0 π ∞ = 2 → FS (w) f (x)sin wxdx : f (x) FS (w) Fourier sine transform of f(x) π 0 ∞ = 2 → Inverse Fourier sine transform f (x) FS (w)sin wxdw : FS (w) f (x) π 0 of FC(x) Ex. 1) Fourier cosine and sine transforms f (x) = k, 0 < x < a; 0, x > a See Table I & II (in 10.11) a a − = 2 = 2 sin aw = 2 = 2 1 cosaw FC (w) k cos wxdx k , FS (w) k sin wxdx k π 0 π w π 0 π w Ex. 2) Fourier cosine transform of the exponential function: f(x) = e-x ∞ 2 π = 2 −x = FC (w) e cos wxdx π 0 1+ w 2 ∞ Linearity, Transforms of Derivatives ℑ + = 2 ()+ C (af bg) af bg cos wxdx ℑ = ℑ = π 0 C (f ) FC , S (f ) FS ℑ + = ℑ + ℑ ℑ + = ℑ + ℑ C (af bg) a C (f ) b C (g); S (af bg) a S (f ) b S (g) Theorem 1: Cosine and sine transforms of derivatives f(x): continuous & absolutely integrable, f(x) 0 as x ∞ f’(x) piecewise continuous 2 ℑ (f '(x)) = wℑ (f (x)) − f (0); ℑ (f '(x)) = −wℑ (f (x)) C S π S C 2 2 ℑ (f ''(x)) = −w 2ℑ (f (x)) − f '(0); ℑ (f ''(x)) = −w 2ℑ (f (x)) + wf (0) C C π S S π ∞ ∞ ℑ = 2 = 2 ∞ + = C (f '(x)) f '(x)cos wxdx f (x)cos wx w f (x)sin wxdx π 0 π 0 0 2 ℑ (f ''(x)) = wℑ (f '(x)) − f '(0) ← ℑ (f '(x)) = −wℑ (f (x)) (See section 11.6) C S π S C Ex. 3) Fourier cosine transforms of exp. Function: f(x)=e-ax (a > 0) ℑ = 2ℑ = − 2ℑ + 2 ℑ = 2 a C (f '') a C (f ) w C (f ) a C (f ) π π a 2 + w 2 10.10. Fourier Transform - from Fourier integral in complex form Complex Form of the Fourier Integral ∞ f (x) = []A(w)cos wx + B(w)sin wx dw 0 1 ∞ 1 ∞ A(w) = f (v)cos wvdv, B(w) = f (v)sin wvdv π −∞ π −∞ 1 ∞∞ f (x) = f (v)()cos wv cos wx + sin wvsin wx dvdw π 0 −∞ 1 ∞∞ even function of w ! = f (v)cos(wx − wv)dvdw π 0 −∞ 1 ∞ ∞ = f (v)cos(wx − wv)dvdw 2π −∞ −∞ 1 ∞ ∞ f (v)sin(wx − wv)dvdw = 0 2π −∞ −∞ Use Euler’s formula: eix = cos x + isin x f (v)[]cos(wx − wv) + isin(wx − wv) = f (v)ei(wx−wv) ∞ ∞ 1 − f (x) = f (v)ei(wx wv)dvdw 2π −∞ −∞ Fourier Transform and Its Inverse ∞ ∞ 1 1 − f (x) = f (v)e iwvdv eiwxdw −∞ −∞ 2π 2π ∞ 1 − Fourier transform of f(x): F(w) = f (x)e iwxdx 2π −∞ 1 ∞ Inverse Fourier transform of F(w): f (x) = F(w)eiwxdw 2π −∞ Ex. 1) Fourier transform of f(x)=k (0<x<a) and f(x)=0 otherwise −aw 1 a − k(1− e ) F(w) = ke iwxdx = 2π 0 iw 2π 2 Ex. 2) Fourier transform of f ( x ) = e − ax (a>0) Linearity. Fourier Transform of Derivatives Theorem 1: Linearity ∞ ℑ + = 1 []+ −iwx C (af bg) af (x) bg(x) e dx ℑ(f (x)) = F(w) 2π −∞ ℑ(af + bg) = aℑ(f ) + bℑ(g) Theorem 2: Fourier transform of the derivative of f(x) f(x): continuous, f(x) 0 as IxI ∞, f’(x) absolutely integrable ℑ(f '(x)) = iw ℑ(f (x)) ℑ(f ''(x)) = −w 2 ℑ(f (x)) ∞ ∞ 1 − 1 − ∞ − ℑ(f ') = f '(x)e iwxdx = fe iwx − (−iw) f (x)e iwxdx 2π −∞ 2π −∞ −∞ ℑ(f '') = iwℑ(f ') = −i2w 2ℑ(f ) = w 2ℑ(f ) − 2 Ex. 3) Fourier transform of f (x) = xe x − 2 1 − 2 1 − 2 iw − 2 ℑ(xe x ) = − ℑ()(e x )' = − iwℑ()e x = − e w / 4 2 2 2 2 from Ex. 2 Convolution ∞ ∞ - Convolution of f * g: h(x) = (f *g)(x) = f (p)g(x − p)dp = f (x − p)g(p)dp −∞ −∞ Theorem 3: Convolution theorem ℑ(f *g) = 2π ℑ(f )ℑ(g) ∞ −∞ 1 − ℑ(f *g) = f (p)g(x − p)e iwxdp dx 2π −∞ −∞ ∞ −∞ 1 − + Interchange of integration order = f (p)g(q)e iw(p q)dq dp 2π −∞ −∞ x-p=q ∞ −∞ 1 − − = f (p) iwp dp g(q)e iwqdp = 2πℑ(f )ℑ(g) 2π −∞ −∞ ∞ Inverse Fourier transform: ( f * g )( x ) = F ( w ) G ( w ) e iwx dw (see 11.6) −∞.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    11 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us