Mugele: Wetting Basics

Mugele: Wetting Basics

FriederMugele Physics of Complex Fluids University of Twente coorganizers: JaccoSnoeier Physics of Fluids / UT Anton Darhuber MesoscopicTransport Phenomena / Tu/e speakers: JoséBico (ESPCI Paris) Daniel Bonn (UvA) MichielKreutzer (TUD) Ralph Lindken (TUD) 1 program Monday: 12:00 –13:00h registration + lunch 13:00h welcome: FriederMugele 13:15h –14:00h FriederMugele: Wetting basics (Young-Laplace equation; Young equation; examples) 14:10-15:25h JaccoSnoeijer: Wetting flows: the lubrication approximation 15:25-15:50h coffee break 15:50-16:35h JaccoSnoeijer: Coating flows: the Landau-Levichproblem and its solution using asymptotic matching 16:45-17:30h Anton Darhuber: Surface tension, capillary forces and disjoining pressure I Tuesday: 9:00h-9:45h FriederMugele: Dewetting 9:5510:40 Anton Darhuber: Surface tension, capillary forces and disjoining pressure II 10:40-11:05h coffee break 11:05h-11:50h Anton Darhuber: Surface tension-gradient-driven flows 12:00h-12:45h Daniel Bonn: Evaporating drops 12:45-14:00h lunch 14:00h-14:45h Daniel Bonn: Drop impact 15:55h-15:40h JoséBico: Elastocapillarity (I) 15:40-16:05h coffee break 16:05h –16:50h JoséBico: Elasticity & Capillarity (II) 18:30 -... joint dinner & get together 2 program Wednesday: 9:00h-9:45h MichielKreutzer: Two-phase flow in microchannels: the Brethertonproblem 9:55h-10:40h Michiel Kreutzer: Drop generation& emulsificationin microchannels 10:40h-11:05h coffeebreak 11:05h-11:50h Michiel Kreutzer: Jet instabilitiesin microchannels 12:00h-12:45h Ralph Lindken: PiVcharacterization of capillarity-driven flows 12:45-14:00h lunch 14:00h-15:00h: occasion for excercises 15:00h-17:00h lab tour (Physics of Complex Fluids / Physics of Fluids) Thursday: 9:00h-9:45h JaccoSnoeijer: Contact line dynamics(I) 9:55h-10:40h JaccoSnoeijer: Contact line dynamics (II) 10:40h-11:05h coffee break 11:05h-11:50h FriederMugele: Wetting of heterogeneous surfaces: Wenzel, Cassie-Baxter 12:00h-12:45h: JaccoSnoeijer: Contact angle hysteresis 12:45-14:00h lunch 14:00h-14:45h JoséBico: Sperhydrophobicity 14:55h-15:40h Anton Darhuber: Thermocapillaryflows 15:40h-16:05h coffee break 16:05h-16:50h Anton Darhuber: Surfactant-driven and solutocapillaryflows Friday: 9:00h-9:45h FriederMugele: Electrowetting: basic principles 9:55h-10:40h FriederMugele: Eectrowettingapplications. 10:40h-11:05h coffee break 11:05-12:00h round up –highlights / short summaries by students 12:00h closure 3 principles of wetting and capillarity æ 1 1 ö s -s ç ÷ cosq = sv sl Dp = s lv ç + ÷ = s lvk Y è R1 R2 ø s lv capillary(Laplace) equation Young equation 4 capillarity-induced instabilities drivingforce: minimizationof surfaceenergy time Rayleigh-Plateau instability 5 drops in microchannels drop generation drop dynamics Anna et al. APL 2003 6 wetting and dewettingflows coating technology dewetting of paint e.g. heating Landau-Levichfilms 7 fundamental flow properties v lubrication flows contact line motion 8 wetting & molecular interactions nanoscaledrop qY x0 disjoining pressure verticalscale: 100 nm 9 capillary forces capillary bridges exert mechanical forces 10 wetting of complex surfaces superhydrophobicsurfaces: the Lotus effect q 11 switching wettability voltage electrowetting& thermocapillarity 12 lecture 1: basics of wetting 13 wetting& liquid microdroplets 50 µm capillaryequation Young equation s -s Dp = p = 2ks cosq = sv sl L lv Y s H. Gauet al. Science 1999 lv 14 origin of interfacial energy O(Å) width à 0: sharp interface model (will be handled throughout this course) range of interactions (O(nm)) surface tension is excess energy w.r.t. bulk cohesive energy U ‘unhappy‘molecules at interfaces ® s » coh lv 2a2 15 interfacialtension liquid A liquid B sAB: interfacial tension interfacial tensions (of immiscible fluids) are always positive 16 interfacial tensions matter at small scales fraction of molecules close to the surface: ì -7 A× dr 3dr ï 3×10 for r=1 cm r = = í V r -3 îï 3×10 for r=1 µm à capillarity is crucial for micro-and nanofluidics 17 mechanical definition of surface tension definition A: The mechanical work d W required to create an additional surface area dA (e.g. by deforming a drop) is given by the surface tension s dW = s dA ¶F thermodynamically: s = ¶A T ,N ,V energy dimension and units: []s = ; 1J/m2 (typically: mJ/m2) area 18 mechanical definition of surface tension 2× s l soap film definition B: s is a force per unit length acting along the liquid-vapor interface aiming to shrink the interfacial area d e force f dimension and units: []s = ; 1N/m= 1J/m2 (typically: mN/m) length i n i connection to definition A work required to move the rod: t dW = 2s ldx i æ 1 dW ö force per unit length per interface: f = -ç- ÷ = s o è 2l dx ø 19 n surface tension of selected liquids material surface tension [mJ/m2] water (25°C) 73 water (100°C) 58 ethanol 23 decanol 28.5 hexane 19.4 decane 23.9 hexadecane 27.6 glycerol 63 acetone 24 mercury 485 water/oil ≈ 50 T-coefficient: (-0.07 …-0.15) mJ/ m2K 20 consequences: the Laplace pressure spherical drop R dR Pdrop Pext dVext = -dVdrop variation of internal energy: dU = - pdropdVdrop - pext dVext +s dA ! mechanical equilibrium: dU = ( pext - pdrop )dVdrop +s dA=0 dA DpL = pdrop - pext = s dVdrop 2s Laplace pressure: Dp = L R 21 generalization to arbitrary surfaces upon crossing an interface between two fluids with an interfacial tension s, the pressure increases by æ 1 1 ö ç ÷ DpL =2s k =ç + ÷s Young-Laplace law è R1 R2 ø 1 æ 1 1 ö k: mean curvature k = ç + ÷ 2 è R1 R2 ø R1, R2: principal radii of curvature (sphere: R1=R2) 22 principleradiiof curvature sign convention: air j R1 > 0 r R2 < 0 n meancurvature: r n 1 æ 1 1 ö k = ç + ÷ 2 è R1 R 2 ø liquid (k isindependent of azimuthalangle f) 23 generalization to arbitrary surfaces upon crossing an interface between two fluids with an interfacial tension s, the pressure increases by æ 1 1 ö ç ÷ DpL =2s k =ç + ÷s Young-Laplace law è R1 R2 ø 1 æ 1 1 ö k: mean curvature k = ç + ÷ 2 è R1 R2 ø R1, R2: principal radii of curvature (sphere: R1=R2) consequence: liquid surfaces in mechanical equilibrium have a constant mean curvature 50 µm (n the absence of other forces) 24 H. Gau et al. Science 1999 variationalderivation of Laplace equation equilibrium surface profile ↔ minimum of Gibbs free energy (at constant volume) ! G = (Fsurf - pV )= min pressure: Lagrange multiplier F : functional of surface profile A: F [A] = s dA surf surf ò explicit representation of surface: z = z(x, y) r r r 2 2 dA =| dA |= Dsx ´ Dsy = 1+ (¶ x z) + (¶ y z) DxDy F [A] = s dA = s 1+ ¶ z 2 + ¶ z 2 dx dy æ Dx ö æ 0 ö surf ò òò ( x ) ( y ) r ç ÷ r ç ÷ Dsx = ç 0 ÷ Dsy = ç Dy ÷ ç¶ z Dx÷ ç ÷ è x ø è¶ y z Dyø volume: V = òò z(x, y)dx dy 25 functional minimization ! G[z(x, y)] = s 1+ ¶ z 2 + ¶ z 2 - p z dx dy = min òò{ ( x ) ( y ) } f (z,¶ x z,¶ y z) d ¶f d ¶f ¶f Euler-Lagrange equation: + - = 0 dx ¶(¶ x z) dy ¶(¶ y z) ¶z ¶f 2¶ z ¶ z = x = x ¶(¶ x z) 2 % S d æ ¶ x z ö ¶ xx z× S - ¶ x z(¶ x z ¶ xx z + ¶ y z ¶ xy z)/ S -3 2 2 ç ÷ = = S (¶ xx z ×(1+ (¶ x z) + (¶ y z) )- ¶ x z(¶ x z ¶ xx z + ¶ y z ¶ xy z)) dx è S ø S 2 d ¶f -3 2 = S (¶ xx z×(1+ (¶ y z) )- ¶ x z ¶ y z ¶ xy z) dx ¶(¶ x z) symmetrically: d ¶f -3 2 ¶f = S (¶ yy z ×(1+ (¶ x z) )- ¶ x z ¶ y z ¶ xy z) = - p dy ¶(¶ y z) ¶z 26 Young Laplace equation 2x mean curvature æ 1 1 ö ¶ z(1+ (¶ z)2 ) - 2(¶ z)(¶ z)(¶ z) + ¶ z(1+ (¶ z)2 ) Dp 2k = ç + ÷ = xx y x y xy yy x = ç ÷ 2 2 3/ 2 è R1 R2 ø (1+ (¶ x z) + (¶ y z) ) s lv non-linear second order partial differential equation ¶ xx z two-dimensional version: Dp = s lv 3 2 1+ (¶ x z) 27 cylindrical coordinates 2 æ 1 ö 2 surface parameterization: r = r(j, z) S = 1+ ç ¶j r ÷ + (¶ zr) è r ø 1 volume: V = dV = dz dr r dj = dz dj r 2 area: A = ò dA =ò dzò r dj S(r,j) ò ò ò ò 2 ò ò cylindrical symmetry: ¶j r = 0 ® r = r(z) æ 1 1 ö Dp = s ç - ¶ r÷ 2 ç 3 zz ÷ S = 1+ (¶ z r) è r S S ø à ordinary differential equation 28 an example fiber immersed in water (complete wetting; no gravity) radius R 1 ¶ zz r 0 = - 3 z=0 Sr S r z 2 BCs: r à ∞: k à 0 S = 1+ (¶ z r) r à R: r’ à 0 1 r'' 1 d æ r ö 0 = - = ç ÷ 2 3 ç 2 ÷ 1+ r' r 1+ r'2 r' dz è 1+ r' ø r = const. = R r'= (r / R)2 -1 > 0 1+ r'2 z>>R solution: r(z) = R cosh(z / R) µ exp(-z / R) 29 three phase equilibrium: wetting q = p 0 < q < p q = 0 s q lv ssl ssv non-wetting partial wetting complete wetting ssl: solid-liquid interfacial energy; ssv (solid-vapor); slv (liquid-vapor) 30 spreading parameter controls wetting behavior partial wetting complete wetting 1 spreading parameter S = [F - F ]= s - (s +s ) A init final sv sl lv S > 0 : complete wetting S < 0 : partial wetting 31 contact angle in partial wetting situation dxcos q slv qY qY ssv ssl dx (horizontal) force balance energy minimization s sv = s sl +s lv cosqY dW = {s sl +s lv cosqY -s sv }dx = 0 s sv -s sl Young equation cosqY = s lv ‘v‘: vapor or second immiscible liquid 32 connecting wetting behavior & surface properties ì> 0 : complete wetting S = s sv - (s sl + s lv ) í î< 0 : partial wetting high energy surfaces (metals, ionic crystals, covalent materials…) are usually wetted E s » coh » 500 ...5000 mJ sv a 2 m2 low energy surfaces (polymers, molecular crystals) are usually partially wetted k T s » B »10 ..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    38 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us