Stml045-Endmatter.Pdf

Stml045-Endmatter.Pdf

http://dx.doi.org/10.1090/stml/045 This page intentionally left blank Higher Arithmeti c An Algorithmic Introduction to Number Theory STUDENT MATHEMATICAL LIBRARY Volume 45 Higher Arithmetic An Algorithmic Introduction to Number Theory Harold M . Edwards ilAMS AMERICAN MATHEMATICA L SOCIET Y Providence, Rhode Islan d Editorial Boar d Gerald B . Follan d Bra d G . Osgoo d (Chair ) Robin Forma n Michae l Starbir d 2000 Mathematics Subject Classification. Primar y 11-01 . For additiona l informatio n an d update s o n thi s book , visi t www.ams.org/bookpages/stml-45 Library o f Congres s Cataloging-in-Publicatio n Dat a Edwards, Harol d M . Higher arithmetic : an algorithmic introduction t o number theory / Harol d M . Edwards. p. cm . — (Studen t mathematica l library , ISS N 1520-912 1 ; v. 45 ) Includes bibliographica l reference s an d index . ISBN 978-0-8218-4439- 7 (alk . paper ) 1. Number theory . I . Title . QA241 .E39 200 8 512.7—dc22 200706057 8 Copying an d reprinting . Individua l reader s o f thi s publication , an d nonprofi t libraries actin g fo r them , ar e permitte d t o mak e fai r us e o f th e material , suc h a s t o copy a chapte r fo r us e i n teachin g o r research . Permissio n i s grante d t o quot e brie f passages fro m thi s publicatio n i n reviews , provide d th e customar y acknowledgmen t o f the sourc e i s given . Republication, systemati c copying , o r multiple reproduction o f any materia l i n this publication i s permitted onl y unde r licens e fro m th e America n Mathematica l Society . Requests fo r suc h permissio n shoul d b e addresse d t o th e Acquisition s Department , American Mathematica l Society , 20 1 Charles Street , Providence , Rhod e Islan d 02904 - 2294, USA . Request s ca n als o b e mad e b y e-mail t o [email protected] . © 200 8 by the America n Mathematica l Society . Al l rights reserved . The America n Mathematica l Societ y retain s al l right s except thos e grante d t o th e Unite d State s Government . Printed i n the Unite d State s o f America . @ Th e pape r use d i n this boo k i s acid-free an d fall s withi n th e guideline s established t o ensur e permanenc e an d durability . Visit th e AM S hom e pag e a t http://www.ams.org / 10 9 8 7 6 5 4 3 2 1 1 3 1 2 1 1 1 0 09 0 8 Contents Preface i x Chapter 1 . Number s 1 Chapter 2 . Th e Proble m AD + B = • 7 Chapter 3 . Congruence s 1 1 Chapter 4 . Doubl e Congruences and the Euclidean Algorithm 1 7 Chapter 5 . Th e Augmente d Euclidea n Algorith m 2 3 Chapter 6 . Simultaneou s Congruence s 2 9 Chapter 7 . Th e Fundamental Theore m o f Arithmetic 3 3 Chapter 8 . Exponentiatio n an d Order s 3 7 Chapter 9 . Euler' s </>-Functio n 4 3 Chapter 10 . Findin g the Orde r o f a mod c 4 5 Chapter 11 . Primalit y Testin g 5 1 VI Higher Arithmeti c Chapter 12 . The RS A Ciphe r Syste m 57 Chapter 13 . Primitive Root s mo d p 61 Chapter 14 . Polynomials 67 Chapter 15 . Tables o f Indices mo d p 71 Chapter 16 . Brahmagupta's Formul a an d Hypernumber s 77 Chapter 17 . Modules o f Hypernumber s 81 Chapter 18 . A Canonical Form fo r Modules o f Hypernumbers 87 Chapter 19 . Solution o f AD + B = • 93 Chapter 20 . Proof o f the Theore m o f Chapter 1 9 99 Chapter 21. Euler's Remarkabl e Discover y 113 Chapter 22 . Stable Module s 119 Chapter 23 . Equivalence o f Module s 123 Chapter 24 . Signatures o f Equivalence Classe s 129 Chapter 25 . The Mai n Theore m 135 Chapter 26 . Modules That Becom e Principal Whe n Square d 137 Chapter 27 . The Possibl e Signature s fo r Certai n Value s o f A 143 Chapter 28 . The La w o f Quadratic Reciprocit y 149 Chapter 29 . Proof o f the Mai n Theore m 153 Chapter 30 . The Theor y o f Binary Quadrati c Form s 155 Chapter 31. Composition o f Binary Quadrati c Form s 163 Contents vn Appendix. Cycle s o f Stable Module s 16 9 Answers to Exercise s 17 9 Bibliography 20 7 Index 20 9 This page intentionally left blank Preface It i s widel y agree d tha t Car l Friedric h Gauss' s 180 1 book Disquisi- tiones Arithmeticae [G ] was the beginning o f modern number theory , the firs t wor k o n th e subjec t tha t wa s systemati c an d comprehen - sive rather than a collection o f special problems an d techniques . Th e name "numbe r theory " b y whic h the subjec t i s known toda y wa s i n use at th e time—Gauss himsel f use d i t (theoria numerorum) i n Arti- cle 5 6 o f the book—bu t h e chos e t o cal l i t "arithmetic " i n hi s title . He explaine d i n th e first paragrap h o f hi s Prefac e tha t h e di d no t mean arithmeti c i n th e sens e o f everyda y computation s wit h whol e numbers bu t a "highe r arithmetic " tha t comprise d "genera l studie s of specifi c relation s amon g whole numbers. " I too prefer "arithmetic " to "numbe r theory." T o me, number the- ory sounds passive, theoretical, and disconnected fro m reality . Highe r arithmetic sound s active , challenging, an d relate d to everyday realit y while aspirin g to transcend it . Although Gauss's explanation o f what h e means by "highe r arith - metic" i n his Preface i s unclear, a strong indication o f what h e had i n mind come s at th e end o f his Preface whe n h e mentions the materia l in hi s Sectio n 7 on th e constructio n o f regula r polygons . (I n mod - ern terms , Sectio n 7 i s th e Galoi s theor y o f th e algebrai c equatio n xn — 1 = 0. ) H e admit s tha t thi s materia l doe s no t trul y belon g t o arithmetic bu t tha t "it s principle s mus t b e draw n fro m arithmetic. " IX X Higher Arithmeti c What h e mean s b y arithmetic , I believe , i s exact computation, clos e to what Leopol d Kronecke r late r calle d "genera l arithmetic." 1 In 21s t centur y terms , Gauss' s subjec t i s "algorithmi c mathe - matics," mathematic s i n whic h th e emphasi s i s o n algorithm s an d computations. Instea d o f set-theoretic abstraction s an d unrealizabl e constructions, suc h mathematic s deal s wit h specifi c operation s tha t arrive a t concret e answers . Regardles s o f wha t Gaus s migh t hav e meant b y hi s titl e Disquisitiones Arithmeticae, wha t I mea n b y m y title Higher Arithmetic i s a n algorithmi c approac h t o th e number - theoretic topic s i n the book , mos t o f whic h ar e draw n fro m Gauss' s great work . Mathematics i s abou t reasoning , bot h inductiv e an d deductive . Computations ar e simpl y ver y articulat e deductiv e arguments . Th e best theoretica l mathematic s i s a n inductiv e proces s b y whic h suc h arguments ar e found , organized , motivated , an d explained . Tha t i s why I think ample computational experience is indispensable to math- ematical education . In teachin g th e numbe r theor y cours e a t Ne w Yor k Universit y several time s i n recen t years , I hav e foun d tha t student s enjo y an d feel the y profi t fro m doin g computationa l assignments . M y ow n ex - perience i n readin g Gaus s ha s usuall y bee n tha t I don't understan d what h e i s doin g unti l h e give s a n example , s o I tr y t o ski p t o th e example righ t away . Moreover , o n anothe r level , i n writing thi s an d previous books , I have ofte n foun d tha t creatin g exercise s lead s to a clearer understandin g o f the materia l an d a muc h improve d versio n of th e tex t tha t th e exercise s ha d bee n mean t t o illustrate .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    21 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us