Tuning of Resonance-Spacing in a Traveling-Wave Resonator Device

Tuning of Resonance-Spacing in a Traveling-Wave Resonator Device

Tuning of resonance-spacing in a traveling-wave resonator device Amir H. Atabaki*, Babak Momeni, Ali A. Eftekhar, Ehsan S. Hosseini, Siva Yegnanarayanan and Ali Adibi School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Drive NW, Atlanta, GA 30332-0250, USA *[email protected] Abstract: In this work a traveling-wave resonator device is proposed and experimentally demonstrated in silicon-on-insulator platform in which the spacing between its adjacent resonance modes can be tuned. This is achieved through the tuning of mutual coupling of two strongly coupled resonators. By incorporating metallic microheaters, tuning of the resonance- spacing in a range of 20% of the free-spectral-range (0.4nm) is experimentally demonstrated with 27mW power dissipation in the microheater. To the best of our knowledge this is the first demonstration of the tuning of resonance-spacing in an integrated traveling-wave-resonator. It is also numerically shown that these modes exhibit high field-enhancements which makes this device extremely useful for nonlinear optics and sensing applications. ©2010 Optical Society of America OCIS codes: (130.3120) Integrated optics devices; (230.5750) Resonators References and links 1. R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678– 1687 (2006). 2. Q. Li, M. Soltani, S. Yegnanarayanan, and A. Adibi, “Design and demonstration of compact, wide bandwidth coupled-resonator filters on a siliconon- insulator platform,” Opt. Express 17(4), 2247–2254 (2009). 3. A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16(7), 4881–4887 (2008). 4. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007). 5. A. H. Atabaki, M. Soltani, S. Yegnanarayanan, A. A. Eftekhar, and A. Adibi, “Optimization of Metallic Micro- Heaters for Reconfigurable Silicon Photonics,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CThB4. 6. M. A. Popovic, T. Barwicz, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Transparent Wavelength Switching of Resonant Filters,” in Conference on Lasers and Electro- Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CPDA2. 7. L. Chen, N. Sherwood-Droz, and M. Lipson, “Compact bandwidth-tunable microring resonators,” Opt. Lett. 32(22), 3361–3363 (2007). 8. J. Magné, P. Giaccari, S. LaRochelle, J. Azaña, and L. R. Chen, “All-fiber comb filter with tunable free spectral range,” Opt. Lett. 30(16), 2062–2064 (2005). 9. Y. G. Han, X. Y. Dong, J. H. Lee, and S. B. Lee, “Wavelength-spacing-tunable multichannel filter incorporating a sampled chirped fiber Bragg grating based on a symmetrical chirp-tuning technique without center wavelength shift,” Opt. Lett. 31(24), 3571–3573 (2006). 10. M. Soltani, S. Yegnanarayanan, and A. Adibi, “Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics,” Opt. Express 15(8), 4694–4704 (2007). 11. M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic Engineering of Waveguide-Resonator Coupling for Silicon Microring/Microdisk/Racetrack Resonators: Theory and Experiment,” (accepted, IEEE J. Quantum Electron. (to appear)). 12. H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall, Englewood Cliffs, NJ, 1984). 13. J. Poon, J. Scheuer, S. Mookherjea, G. Paloczi, Y. Huang, and A. Yariv, “Matrix analysis of microring coupled- resonator optical waveguides,” Opt. Express 12(1), 90–103 (2004). #124039 - $15.00 USD Received 17 Feb 2010; revised 11 Apr 2010; accepted 16 Apr 2010; published 21 Apr 2010 (C) 2010 OSA 26 April 2010 / Vol. 18, No. 9 / OPTICS EXPRESS 9447 1. Introduction Recent technological advances in high-index-contrast material platforms, such as silicon, are promising an unprecedented level of photonics integration [1]. The development of high quality factor (Q) and compact resonators for different applications, such as, signal processing, sensing, and nonlinear optics has been an important and active area of research in this field [2–4]. Moreover, the possibility of low-power and low-loss tuning of resonance properties of such resonators has significantly enhanced device functionalities for applications where reconfiguration is required [5–7]. So far, most reconfigurable devices are envisioned for linear applications (e.g., filtering) where just one resonance mode is of interest. However, for many nonlinear optics and sensing applications, more than one wave with different frequencies may interact. To maximize the interaction of optical waves at different frequencies inside the resonator, it is essential to engineer the resonance condition at different free-spectral-ranges (FSRs), to allow the simultaneous resonance for all interacting waves. However, one of the challenges of resonance-based devices is the fixed resonance frequency spacing (or FSR) of their adjacent resonance modes which cannot be easily tuned. In many nonlinear and sensing applications, the resonance spacing is required to be trimmed after fabrication or to be dynamically tuned for higher performance [3]. The tuning of FSR has been demonstrated before in fiber-based devices [8,9]; however, there has not been any work on the tuning of the frequency spacing of adjacent resonant modes in an integrated platform. In this work we propose and experimentally demonstrate a traveling-wave resonator (TWR) structure in silicon (Si) photonics platform, in which the spacing of adjacent resonance modes can be tuned dynamically. To the best of our knowledge, this is the first demonstrating of frequency-spacing tuning in an integrated platform. 2. Device proposal and simulation results TWRs are one of the more widely used types of resonators in integrated optics because of their low-loss properties [10] and easy engineering of their coupling to input/output 2 waveguides [11]. The FSR of these resonators is given by λ /Lng; where λ is the resonance wavelength, L is the optical length of resonator, and ng is the group index sensed by the traveling wave. Since in conventional microring, microdisk, or racetrack TWRs, ng cannot be tuned in a wide range, FSR of these resonators is almost fixed. This very fundamental property of resonators calls for an indirect approach for the tuning of the spacing of adjacent resonant modes. In this work, we exploit the mode-splitting properties of a strongly coupled TWR device to achieve dynamic tuning of the spacing of resonant modes. Figure 1(a) shows the structure of two identical TWRs coupled together through a general 2 reflection-less directional coupler (DC) with power coupling coefficient κ c . Based on the coupled-mode theory [12], it is expected that the resonance frequency of the individual resonators to split into even and odd coupled modes (or supermodes) upon coupling. The mode with lower (higher) resonance frequency is denoted as even (odd) throughout this work. This splitting can be comparable to the FSR of resonators for high enough level of coupling. Figures 1(b) and 1(c) show the two coupled-resonator structures of our interest in which coupling is achieved using one and two symmetric DCs, respectively. The power coupling coefficient of all DCs in both structures are κ2. The structures in Figs. 1(b) and 1(c) are called single-point-coupled and two-point-coupled resonator structures, respectively. Figure 1(d) shows the amount of resonance-frequency splitting normalized to the FSR of each single resonator versus the power coupling coefficient of DCs (i.e., κ2). Appendix A contains the details of the derivation of resonance condition for both devices. These simulations are performed for two identical silicon-on-insulator (SOI) coupled racetrack resonators composed of waveguides with effective refractive index and group index of 2.5 and 4.25, respectively. #124039 - $15.00 USD Received 17 Feb 2010; revised 11 Apr 2010; accepted 16 Apr 2010; published 21 Apr 2010 (C) 2010 OSA 26 April 2010 / Vol. 18, No. 9 / OPTICS EXPRESS 9448 Fig. 1. (a) Structure of two identical TWRs coupled together through a general coupler: (b) and (c) show the structures of two TWRs coupled together through one and two symmetric DCs, respectively. (d) The normalized frequency splitting of the structures shown in (b) and (c) vs. power coupling coefficient. It is observed that for single-point-coupled (Fig. 1(b)) and two-point-coupled (Fig. 1(c)) resonator structures, frequency splitting of up to half of an FSR and one whole FSR are achieved, respectively. To elucidate more, the transmission spectra of these coupled-resonator structures coupled to external bus waveguides are calculated and the results are depicted in Figs. 2(a)-2(f). The transmissions are calculated using a similar transfer-matrix approach as in Ref [13], with the transfer-matrix parameters of the single-point-coupled and two-point- coupled couplers derived in appendix A (Eqs. (5) and (6)). In these simulations an intrinsic Q of 105 is assumed for the SOI racetrack resonators with effective refractive index and group index of 2.5 and 4.25, respectively; corresponding to waveguides with a width of 480 nm and thickness of 230 nm buried under SiO2 cladding. The length of each single resonator is considered to be 245 µm and the lower resonator is coupled to an external bus waveguide with 2 a power coupling coefficient of κ ex = 09.0 . The horizontal axes in Figs. 2(a)-2(f) is frequency detuning with respect to one of the modes of the uncoupled resonator (near λ0 = 1.55 µm) normalized to the FSR of the uncoupled resonator.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    9 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us