6.5 X 11 Threelines.P65

6.5 X 11 Threelines.P65

Cambridge University Press 978-0-521-12821-6 - A Mathematical Tapestry: Demonstrating the Beautiful Unity of Mathematics Peter Hilton and Jean Pedersen Index More information Index (2, 1)-folding procedure 44 BAMA (Bay Area Mathematical Adventures) 206 (2, 1)-tape 44 Barbina, Silvia xiii (4, 4)-tape 99 Berkove and Dumont 205 1-period paper-folding 17 Betti number 231 10-gon from D2U 2-tape 50 big guess 279 11-gon 96 bold italics x 12-8-flexagon 16 Borchards, Richard 236 12-celled equatorial collapsoid 184–185 braided cube 117 12-celled polar collapsoid 179–185 braided octahedron 116 16-8-flexagon 16 braided Platonic solids 123, 125 2-period folding procedure 49 braided tetrahedron 115 2-period paper-folding 39 braiding the diagonal cube 129–130 2-symbol 99 braiding the dodecahedron 131–136 20-celled polar collapsoid 182 braiding the golden dodecahedron 129, 131 3-6-flexagon 195 braiding the icosahedron 134–138 3-period folding procedure 97 3-symbol 104 Caradonna, Monika xiii 30-celled collapsoid 183–186 Cartan, Henri 237 6-flexagons 4 Challenger space shuttle 2 6-6 flexagons 7–11 closed orientable manifold 232 8-flexagon 11–16 closed orientable surface 230 9-6 flexagon 9 coach 261 90-celled collapsoid 190 coach theorem 260–263, 264 90-celled collapsoid (more symmetric) 193 coach theorem (cyclic) 271 coach theorem (generalized) 267–271 Abel Prize 236 collapsible cube 194 accidents (in mathematics there are no) 275, 271 collapsoids 38, 175–194 Albers, Don xv collapsoids, equatorial 176 Alexanderson and Wetzel 206 collapsoids, polar 176 Alexanderson, Gerald L. ix, 256 combinatorial invariant 158 alternating group 152, 246, 255 combinatorial threads 206 American Mathematical Monthly 235 commutative 240 American Mathematical Society 257 complementary factor 106–108 Andreas,J.M.95 33 complementary a -gon 263 angular deficiency 154 complete modified symbol 262 angular deficiency (total) 155 complete net 72 Archimedean solids 222 complete symbol 100, 261 Artmann, Beno ix contracted symbol 99 Aumann, Robert 236 convex deltahedra 73, 74 convex polyhedron 82 bad mathematics lecture 259 coset 242 Ball, Rouse 95, 206 Courant and Robbins 152 286 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-12821-6 - A Mathematical Tapestry: Demonstrating the Beautiful Unity of Mathematics Peter Hilton and Jean Pedersen Index More information Index 287 Coxeter 206 Euler characteristic 158, 223, 230 Coxeter, Duval, Flather and Petrie 220 Euler totient function xii Coxeter, H. S. M. 38, 73, 175 Euler’s formula 154 cross-caps (Mobius¨ bands) 231 Euler–Poincare´ characteristic 233 cube 212 even permutation theorem 253 cube (collapsible) 194 extended face planes of the cube 213–214 cube (diagonal) 212 extended face planes of the octahedron 213–215 cube (extended face planes of) 213–214 extended face planes of the tetrahedron 213 cube (symmetries of) 145–149 Cundy 206 facial expressions of the flexagon 204 Cundy and Rollett 206 facts about the Platonic solids 210 cycle 101 facts of life 110, 112 cycle index 249 famous number sequences 105 cycle index theorem 250 FAT 5-gon 31, 31 cyclic coach theorem 271 FAT 7-gon 244 cyclic group 245 FAT 10-gon 49 FAT 17-gon 99 decahedron 81 FAT algorithm 24, 39, 40 definition of a group 239 FAT pentagon 165 deltahedron 73 Fermat number 232 + 1 108 Dennison, Clare xv Fermat number xii, 20, 105, 106 Descartes, Rene´ 154, 229 Fermat prime 20 Descartes’ angular deficiency 154 Fermat, Pierre 106 Descartes’ theorem (dual for) 229 Fermat’s Little Theorem 68 Descartes’ total angular defect 223 Feynman, Richard P. 2 diagonal cube (braiding) 129–130 Fibonacci number(s) 54, 105, 237 diagonal cube 125, 126, 212 Fields Medal 236 dihedral group 245 flexagon 3–16 dipyramid 86, 160 flexagon (facial expressions of) 204 divisions of the plane 206 flexing down 200 dodecadeltahedron 75 flexing up 198 dodecahedron 81, 123, 164 fold total 102 dodecahedron (braiding) 131–136 folding numbers 56 dodecahedron (ghost of) 221 D2U 1-folding procedure 43 dodecahedron (golden) 212 folding numbers written in base 10 57 dodecahedron (great stellated) 164, 168–174 folding numbers written in base t 56 dodecahedron (great) 164, 171–172 function (symmetric) 236 dodecahedron (offspring of) 143 dodecahedron (rhombic) 175, 176 Garcia, Victor xiii dodecahedron (small stellated) 164–173 Gardner, Martin 2 dodecahedron (stellations of) 219 Gauss xiii dodecahexaflexagon 10 generalized coach theorem 267–271 dodecaoctaflexagon 16 generalized quasi-order theorem 264–267 Donmoyer, Sylvie xi genus 231 double torus 231 geometrical error 18 dual for Descartes’ theorem 229 ghost of a dodecahedron 221 dual polyhedra (pairs of) 160 Gilbert and Sullivan 3 duals 210 G-invariants 243 Dumont (Berkove and) 205 golden dodecahedron 125, 126, 212 golden dodecahedron (braiding) 129, 131 Eidgenossische¨ Technische Hochschule (ETH) 256 golden ratio 125 entire group 200–202 great dodecahedron 164, 171–172 equatorial collapsoids 176 great stellated dodecahedron 164, 168–174 Erlanger Programm 238 Greeks xiii, 20 Euclid 154 group (alternating) 246 Euclidean algorithm 53 group (cyclic) 245 Euclidean construction 20 group (definition of) 239 Euclidean geometry 238 group (dihedral) 245 Euclidean motions 243 group (entire) 200–202 Euclidean tools 20 group (happy) 197–199 Euler, Leonhard 20, 106, 229 group (infinite) 240 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-12821-6 - A Mathematical Tapestry: Demonstrating the Beautiful Unity of Mathematics Peter Hilton and Jean Pedersen Index More information 288 Index group (order of) 241 magical relationships 173 group (symmetric) 241, 245 Manhattan Project 2 group table (square) 240 MANIAC 2 group theory 238 manifold (closed orientable) 232 group theory and hexaflexagons 195–205 material error 17 group-theoretical threads 206 Mathematical Association of America 257 Grunbaum¨ and Shephard notation 142, 229 Mathematical Discovery 259 Grunbaum,¨ Branko 139 Mathematics Magazine 203 medium-line 9-gon 35 Hall, Philip 1 Mersenne, Abbe´ 105 Handbook of Applicable Mathematics 238 Mersenne number 105 happy group 197–199 Mersenne number 211 − 1 108 Harmonia mundi 214 Mobius¨ bands (cross-caps) 231 Heath, R. V. 95 modified symbol 102, 268, 270 height of a 60 Morrison, Philip 2 heptahedron 81 hexacaidecadeltahedra (rotating ring of) 93–94 Nash, John 236 hexacaidecadeltahedron 75 National Council of Teachers of Mathematics hexacaidecahedron 81 259 hexacaidecaoctaflexagon 16 net 72 hexaflexagons 4 net for hexahedron (cube) 77 hexahedron (cube) 123 net for regular pentagonal dodecahedron 77 hexahedron 81 Nobel Prize 236 hexahexaflexagons 7 Noether, Emmy 233 Hilton, Margaret xv nonahedron 81 homologues 247–252 nonahexaflexagon 9 homology groups 231 non-convex polyhedron 82 Hooper, Jennifer xiii, 14, 16 normal subgroup 203, 255 Hubble Space Telescope 3 Northcott, D. G. 1 Nugent, Mike xv icosahedral symmetry 211 number theory 96 icosahedron 75, 81, 123 number trick 66 icosahedron (braiding) 134–138 icosahedron (offspring of) 143 octaflexagons 11 icosahedron (symmetric) 141 octahedral symmetry 211 in mathematics there are no accidents 275, 271 octahedron (extended face planes of) index 243 213–215 infinite group 240 octahedron (symmetric) 140, 141 invariant 245 octahedron 74, 81, 123 invariant, combinatorial 158 octahedron, regular (symmetries of) invariant, topological 158 149–151 isonemal fabrics in the plane 140 offspring of a dodecahedron 143 isonemal fabrics on polyhedral surfaces 142 offspring of the icosahedron 143 optimistic strategy 43, 46, 96 Jennifer’s puzzle 110–122, 145, 149 order of a group 241 Jones, James H. 3 orientation and symmetry 152 Kepler, Johannes 122, 214 parity 253 Kinsey Report 3 parlor tricks 176, 271 Kinsey, Alfred C. 3 pass-through flex 13–14 Klein, Felix 238, 256, 257 Pedersen home 256 Pedersen, Chris 176, 271 Lagrange, Joseph-Louis 241 Pedersen, Jennifer 112 Lagrange’s theorem 242 Pedersen, Kent xv Ledermann 238 pentacaidecahedron 81 Lefschetz, S. 1 pentacaidecahexaflexagon 10 Logothetti, Dave 225 pentagon (FAT) 165 long-line 5-gon 30 pentagon (long-line) 165 long-line 9-gon 34 pentagon (short-line) 165 long-line pentagon 165 pentagonal dipyramid 74, 86–88, 247 Lucas number 54, 105, 238 pentagram(s) 164 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-12821-6 - A Mathematical Tapestry: Demonstrating the Beautiful Unity of Mathematics Peter Hilton and Jean Pedersen Index More information Index 289 pentahedron 81 short-line 9-gon 35 period 46 short-line pentagon 165 permutation 101 Siamese dodecahedron 73 permutation group S4 149 simplexes 234 Platonic solids xiii, 80, 84, 85, 206, 211 small stellated dodecahedron 164–173 Platonic solids (braided) 123, 125 Spitzer, Lyman, Jr. 3 Platonic solids (fact about) 210 square group table 240 Poincare´ polynomial 235 Stalker, R. M. 95 polar collapsoids 176 stella octangula 121, 122, 214 Polya´ 206 stellations of the dodecahedron 219 Polya´ enumeration theorem 248–250 Stone, Arthur H. 1–3 Polya,´ George 154, 256, 259 straight flex 13 Polya,´ Stella 256 subgroup 241 Polya’s´ dream 223–225 super symmetry 236 polygon 80 surface (closed orientable) 230 polygonal region 80 symbol (2-) 99 polyhedra, self-dual 161 symbol (complete modified) 262 polyhedron and its dual 160 symbol (complete) 100, 261 Preston, Dawn xv symbol (contracted) 99 primary crease lines 44 symbol (modified) 102, 268, 270 primary folding procedure of period 3 99 symbol (reduced) 99 prime section 58 symmetric

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    5 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us