Introduction to Aberrations OPTI 518 Lecture 13

Introduction to Aberrations OPTI 518 Lecture 13

Introduction to aberrations OPTI 518 Lecture 13 Prof. Jose Sasian OPTI 518 Topics • Aspheric surfaces • Stop shifting • Field curve concept Prof. Jose Sasian OPTI 518 Aspheric Surfaces • Meaning not spherical • Conic surfaces: Sphere, prolate ellipsoid, hyperboloid, paraboloid, oblate ellipsoid or spheroid • Cartesian Ovals • Polynomial surfaces • Infinite possibilities for an aspheric surface • Ray tracing for quadric surfaces uses closed formulas; for other surfaces iterative algorithms are used Prof. Jose Sasian OPTI 518 Aspheric surfaces The concept of the sag of a surface 2 cS 4 6 8 10 ZS ASASASAS4 6 8 10 ... 1 1 K ( c2 1 ) 2 S Sxy222 K 2 K is the conic constant K=0, sphere K=-1, parabola C is 1/r where r is the radius of curvature; K is the K<-1, hyperola conic constant (the eccentricity squared); -1<K<0, prolate ellipsoid A’s are aspheric coefficients K>0, oblate ellipsoid Prof. Jose Sasian OPTI 518 Conic surfaces focal properties • Focal points for Ellipsoid case mirrors Hyperboloid case Oblate ellipsoid • Focal points of lenses K n2 Hecht-Zajac Optics Prof. Jose Sasian OPTI 518 Refraction at a spherical surface Aspheric surface description 2 cS 4 6 8 10 ZS ASASASAS4 6 8 10 ... 1 1 K ( c2 1 ) 2 S 1122 2222 22 y x Aicrasphe y 1 x 4 K y Zx 28rr Prof. Jose Sasian OTI 518P Cartesian Ovals ln l'n' Cte . Prof. Jose Sasian OPTI 518 Aspheric cap Aspheric surface The aspheric surface can be thought of as comprising a base sphere and an aspheric cap Cap Spherical base surface Prof. Jose Sasian OPTI 518 Aspheric surface contributions Prof. Jose Sasian OPTI 518 2 1 y Wa220 4 y Prof. Jose Sasian OPTI 518 Stop at aspheric surface 4 2 WHcap , Ayn4 Prof. Jose Sasian OPTI 518 Upon stop shifting 4 2 WHcap , Ayn4 shift shift Prof. Jose Sasian OPTI 518 Aspheric cap contributions New stop y y Old stop Prof. Jose Sasian OPTI 518 Stop shifting 4 2 WHcap , Ayn4 shift shift shift SH yy y 0 y S new old new yyy Prof. Jose Sasian OPTI 518 2 Expansion of shift shift 2 2 2SH S H H shift shift 2 2SH S H H 2 2 2 44SH S H 2 234 24S HH S HH H S HH Prof. Jose Sasian OPTI 518 Aberration function upon stop shifting for an aspheric cap 4 2 WHcap , Ayn4 shift shift 442 Ay44 n 4 Ay n S H 2 42 42 42Ay44 n S H Ay n S H H 2 43 44 4Ay44 n S H H H Ay n S H H 112 12 aaSHaSH 2 82 2 11 1 2 aS23 H H aS H H H aS4 H H 42 8 4 aAyn8 4 Prof. Jose Sasian OPTI 518 Aspheric contributions Prof. Jose Sasian OPTI 518 Aberration function of base sphere and aspheric cap WH ,,, Wspherical H Wcap H Case of an aspherical surface with the stop at the surface: 2221 24u WAyAyn040 4 8 n 222 Sag Sphere A4 x y Prof. Jose Sasian OPTI 518 Stop shifting Prof. Jose Sasian OPTI 518 Stop shifting Prof. Jose Sasian OPTI 518 Stop shifting • How do the aberration coefficients change as we shift the stop? • Used to ease calculations • Most importantly, the formulas give insights • The concept of object shifting Prof. Jose Sasian OPTI 518 Stop shifting parameter Prof. Jose Sasian OPTI 518 Stop shifting formulas Prof. Jose Sasian OPTI 518 Derivation for A Ж Ay11 Ay Ж A22y Ay 0 A12AyAyy 12 yy y A AAAS21 yy AAAS Prof. Jose Sasian OPTI 518 Derivation of new Seidel sums upon stop shifting AASA 2 u SAyI n SSII And similarly for: uu SAAyAASAyII nn uu2 SSIV IV AAy S A y nn 23 SSSSSVV IVIII 33 SSSS III SSSSII II I 2 2 uu SAyASAyIII nn 222u A 2 AAS S A y n 2 SSIII III2 SSSS II I Prof. Jose Sasian OPTI 518 Field focus curve concept 2 w Provides limit for a given wavefront variance. Prof. Jose Sasian OPTI 518 Field focus curve concept Prof. Jose Sasian OPTI 518 Field focus curve concept •Must preserve DOF Prof. Jose Sasian OPTI 518 Summary • Variety in aspheric surfaces • Aspheric surface contributions to fourth- order aberrations • Stop shifting and how aberrations change • The concept of field focus curve Prof. Jose Sasian OPTI 518.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    29 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us