Undergraduate Analysis Tools

Undergraduate Analysis Tools

Bruce K. Driver Undergraduate Analysis Tools February 21, 2013 File:unanal.tex Contents Part I Numbers 1 Natural, integer, and rational Numbers :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 3 1.1 Limits in Q .............................................................................................................................4 1.2 The Problem with Q .....................................................................................................................7 1.3 Peano's arithmetic (Highly Optional) . .9 2 Fields:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 13 2.1 Basic Properties of Fields . 13 2.2 OrderedFields.......................................................................................................................... 15 3 Real Numbers ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 19 3.1 Extended real numbers . 22 3.2 Limsups and Liminfs . 24 3.3 Partitioning the Real Numbers . 29 3.4 The Decimal Representation of a Real Number . 29 3.5 Summary of Key Facts about Real Numbers . 30 3.6 (Optional) Proofs of Theorem 3.6 and Theorem 3.3 . 31 3.7 Supremum and Infiniums of sets . 32 4 Complex Numbers ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 35 4.1 A Matrix Perspective (Optional) . 37 5 Set Operations, Functions, and Counting :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 39 5.1 Set Operations and Functions . 39 5.1.1 Exercises......................................................................................................................... 40 5.2 Cardinality ............................................................................................................................. 41 5.3 FiniteSets.............................................................................................................................. 41 5.4 Countable and Uncountable Sets . 43 4 Contents 5.4.1 Exercises......................................................................................................................... 46 Part II Normed and Metric Spaces 6 Metric Spaces ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 49 6.1 Normed Spaces [Linear Algebra Meets Analysis] . 49 6.1.1 Review of Vector Spaces and Subspaces . 49 6.1.2 Normed Spaces . 50 6.2 Sequences in Metric Spaces . 55 6.3 General Limits and Continuity in Metric Spaces . 58 6.4 Density and Separability . 66 6.5 Test 2: Review Topics . 67 7 Series and Sums in Banach Spaces ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 69 8 More Sums and Sequences ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 85 8.1 Rearrangements . 85 8.2 DoubleSequences ....................................................................................................................... 90 8.3 Iterated Limits . 93 8.4 Double Sums and Continuity of Sums . 94 8.5 Sums of positive functions . 95 8.6 Sums of complex functions . 97 8.7 Iterated sums and the Fubini and Tonelli Theorems . 99 8.8 `p { spaces, Minkowski and H¨olderInequalities . 100 8.9 Exercises............................................................................................................................... 103 8.9.1 Limit Problems . 103 8.9.2 Monotone and Dominated Convergence Theorem Problems . 103 8.9.3 `p Exercises ...................................................................................................................... 105 9 Topological Considerations :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 107 9.1 Closed and Open Sets . 107 9.2 Continuity Revisited . 112 9.3 Metric spaces as topological spaces (Not required Reading!) . 113 9.4 Exercises............................................................................................................................... 114 9.5 Sequential Compactness . ..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    173 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us