A comparative study on the prospects of sustainable aviation fuels in Sweden Daniel Katebi Olle Hoffman Carlsson Kandidatexamensarbete KTH – Skolan för Industriell Teknik och Management Energiteknik EGI-2020) Bachelor of Science Thesis KTH School of Industrial Engineering and Management Energy Technology EGI-2020 TRITA-ITM-EX 2020:220 SE-100 44 STOCKHOLM Bachelor of Science Thesis EGI-2020 TRITA-ITM-EX 2020:220 Approved Examiner Supervisor Dilip Khatiwada Dilip Khatiwada Commissioner Contact person -2- Sammanfattning Flygplansindustrin behöver röra sig mot en mer hållbar framtid för att nå Europeiska Unionens klimatmål (att nå en klimatneutral ekonomi senast 2050), och under de senaste åren har intresset för hållbara flygplansbränslen ökat markant. I denna rapport sammanställde och jämförde vi olika produktionsvägar och råmaterial utifrån ekonomiskt-, tekniskt- och klimatperspektiv för långsiktig implementation. En litteraturstudie utfördes för att samla information om hållbara flygplansbränslen. Det finns ett flertal sätt att producera hållbara flygplansbränslen och denna rapport jämför tre olika produktionsvägar: Hydroprocessed Esters and Fatty Acids (HEFA), hydrotermisk förvätskning (HTL) och elektrobränslen. Av dessa har enbart HEFA godkänts för användning som flygbränsle (april 2020). Rapporten jämförde även tre olika råmaterial: biomassa från skogen, matlagningsolja samt matavfall ur ett svenskt perspektiv. Jämförelsen utfördes med en Pugh-matris som var baserad på: minskning i växthusgasutsläpp, teknisk mognadsgrad (hur långt i utvecklingen har produktionsväggen kommit), kostnaden för bränslet, effektivitet och potentiell bränslemängd (hur stor del av svenska jetbränslekonsumtionen kan vardera produktionsväg täcka). För att sätta jämförelsen i ett långsiktigt perspektiv vägdes jämförelseparameterna till: potentiell bränslemängd - 30%, minskning i växthusgasutsläpp - 30%, pris – 20%, avkastning – 10% och bränslet mognadsgrad – 10% av total 100 poäng. Studien fann att HTL med biomassa från skogen är lämpligast för en långsiktig implementation, på grund av dess höga potentiella bränslemängd samt ett lågt pris. Om priset för elektrobränslen kan minska genom till exempel statliga subventioner är även det ett intressant alternativ framförallt på grund av väldigt låga växthusgasutsläpp. Abstract The aviation industry needs to move towards a more sustainable future to achieve the climate goals set forth by the European Union (to reach a climate neutral economy by 2050), and in the recent past the interest in sustainable jet fuel has increased. In this report we compared different feedstocks and pathways for production of sustainable jet fuels from an economical, technical and environmental perspective for long-term implementation. A literature study was performed to gather data regarding fossil-based jet fuel, feedstocks for jet bio fuels and pathways for producing sustainable jet fuels. There are multiple ways of producing sustainable jet fuel and this report compares three different pathways: Hydroprocessed esters and fatty acids (HEFA), hydrothermal liquefaction (HTL) and electrofuel. Of these pathways, only HEFA has received certification for use as a jet fuel as of April 2020. The report also compared three different feedstocks: forest residues, used cooking oil and food waste. The comparison was done with a Pugh matrix - a criteria-based matrix - and was based on greenhouse gas (GHG) emission reduction, fuel readiness level (what stage of development the pathway is in), fuel production cost, yield and potential fuel output (how much of Sweden’s current jet fuel consumption can potentially be covered by each pathway/feedstock). The relevant data for the comparison was also gathered from the literature study. To put the comparison in a long-term context, the parameters where given a percentage of the total 100 points: potential fuel output – 30%, GHG-e – 30%, price – 20%, Yield – 10% and fuel readiness level – 10%. -3- The study found that HTL with forest residues is most suitable for long-term implementation because of a high potential fuel output and low price. If the fuel production price of electrofuels can go down e.g. through government subsidies it would be another suitable alternative due to its massive potential in GHG emission reduction. -4- Table of Contents 1 Background ........................................................................................................................................... 8 1.1 Sustainable aviation fuels ............................................................................................................ 8 2 Thesis goal and scope .......................................................................................................................... 9 2.1 System boundary of the thesis ................................................................................................. 10 3 Literature review ................................................................................................................................. 10 3.1 Greenhouse gas (GHG) emissions ......................................................................................... 10 3.2 Fuel readiness level (FRL) ........................................................................................................ 11 3.3 Conventional jet fuel ................................................................................................................. 13 3.4 Feedstocks .................................................................................................................................. 14 3.4.1 Used cooking oil ................................................................................................................ 14 3.4.2 Food Waste ........................................................................................................................ 14 3.4.3 Forest Residues .................................................................................................................. 14 3.5 Sustainable aviation fuel production pathways...................................................................... 15 3.5.1 Hydroprocessed esters and fatty acids (HEFA) ........................................................... 15 3.5.2 Hydrothermal liquefaction, HTL .................................................................................... 16 3.5.3 Electrofuels ........................................................................................................................ 18 3.6 Stakeholders involved in the SAF ........................................................................................... 19 3.7 Policies that affects the parameters ......................................................................................... 22 3.8 Pugh matrix – tool for comparison of SAF ........................................................................... 22 4 Method ................................................................................................................................................ 23 4.1 Method for comparison – Pugh matrix .................................................................................. 23 4.2 Method for calculating the potential fuel output .................................................................. 24 5 Results and conclusion ...................................................................................................................... 25 5.1 Potential fuel output .................................................................................................................. 25 5.2 Pugh-matrix ................................................................................................................................ 26 5.3 Sensitivity analysis ...................................................................................................................... 27 6 Discussion and concluding remarks ................................................................................................ 32 7 Appendix ............................................................................................................................................. 33 7.1 Calculations for PFO ................................................................................................................ 33 7.2 Points available in each parameter .......................................................................................... 33 7.3 Grading ....................................................................................................................................... 33 8 References ........................................................................................................................................... 34 -5- Figures Figure 1: Schematic overview of an exemplified supply for the SAF chain that forms the basis for the well to wake emissions data (de Jong, 2018). ................................................................................... 11 Figure 2: Schematic overview of the supply for the fossil jet fuel chain that forms the basis for the well to wake emissions data (de Jong, 2018). ......................................................................................... 11 Figure 3: Total emissions from Swedish air travel between 1990 and 2017 (Naturvårdsverket, 2019). Emissions at higher altitudes has greater climate impact than emissions on sea level (height effect) (Transport & Environment, 2018)..........................................................................................................
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages39 Page
-
File Size-